File size: 7,949 Bytes
034cbdf
7fc9a28
 
034cbdf
 
 
 
7fc9a28
 
034cbdf
 
 
7fc9a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
034cbdf
 
7fc9a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
034cbdf
7fc9a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
034cbdf
 
7fc9a28
 
034cbdf
7fc9a28
 
 
 
 
034cbdf
 
7fc9a28
 
034cbdf
 
7fc9a28
 
 
 
 
 
 
 
034cbdf
7fc9a28
 
 
 
 
 
034cbdf
 
 
7fc9a28
 
034cbdf
7fc9a28
 
 
 
 
 
4b86b2a
7fc9a28
 
034cbdf
7fc9a28
 
 
 
 
 
034cbdf
 
 
 
 
7fc9a28
 
 
 
034cbdf
4b86b2a
7fc9a28
 
 
 
 
 
 
 
 
034cbdf
 
7fc9a28
 
 
 
 
 
 
 
4b86b2a
7fc9a28
4b86b2a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import json
from pathlib import Path
from typing import Dict, List

import meeteval.io
import pandas as pd

from txt_norm import get_text_norm
from utils import calc_wer, aggregate_wer_metrics


class LeaderboardServer:
    """Manages ASR model submissions and leaderboard generation."""

    def __init__(self,
                 reference_base_path: str = "references",
                 tasks_metadata_path: str = "tasks_metadata.json",
                 local_leaderboard_path: str = "submissions"):
        """Initialize the leaderboard server.

        Args:
            reference_base_path: Base path for reference files
            tasks_metadata_path: Path to tasks metadata JSON file
            local_leaderboard_path: Directory for storing submissions
        """
        self.reference_base_path = Path(reference_base_path).resolve()
        self.tasks_metadata_path = Path(tasks_metadata_path).resolve()
        self.local_leaderboard = Path(local_leaderboard_path).resolve()

        # Load tasks metadata
        self.tasks_metadata = self._load_tasks_metadata()

        # Initialize storage
        self.local_leaderboard.mkdir(exist_ok=True)
        self.text_normalizer = get_text_norm("whisper_nsf")

    def _load_tasks_metadata(self) -> Dict:
        """Load tasks metadata from JSON file."""
        try:
            with open(self.tasks_metadata_path) as f:
                return json.load(f)["tasks"]
        except (FileNotFoundError, KeyError, json.JSONDecodeError) as e:
            raise ValueError(f"Failed to load tasks metadata: {e}")

    def _get_results_file_path(self, task: str) -> Path:
        """Get the path to the results file for a specific task."""
        return self.local_leaderboard / f"{task}_results.json"

    def _create_submission_id(self, metadata: Dict[str, str]) -> str:
        """Create a unique submission ID from metadata."""
        return f"{metadata['submitted_by']}_{metadata['model_id']}"

    def _normalize_text_if_needed(self, segment: Dict, normalize: bool) -> Dict:
        """Apply text normalization to a segment if requested."""
        if normalize:
            return {**segment, "words": self.text_normalizer(segment["words"])}
        return segment

    def _evaluate_dataset(self,
                          hyp_seglst,
                          ref_seglst,
                          normalize: bool = False) -> Dict:
        """Evaluate WER for a single dataset."""
        # Apply normalization if requested
        if normalize:
            ref_seglst = ref_seglst.map(lambda seg: self._normalize_text_if_needed(seg, True))
            hyp_seglst = hyp_seglst.map(lambda seg: self._normalize_text_if_needed(seg, True))

        # Calculate WER metrics
        per_session_wers = calc_wer(
            tcp_hyp_seglst=hyp_seglst,
            ref_seglst=ref_seglst,
            collar=5,
            metrics_list=["tcp_wer"]
        )

        return aggregate_wer_metrics(per_session_wers, ["tcp_wer"])

    def _load_existing_results(self, task: str) -> Dict:
        """Load existing results for a task, or return empty dict."""
        results_path = self._get_results_file_path(task)
        if results_path.exists():
            with open(results_path) as f:
                return json.load(f)
        return {}

    def _save_results(self, task: str, results: Dict) -> None:
        """Save results to the task results file."""
        results_path = self._get_results_file_path(task)
        with open(results_path, "w") as f:
            json.dump(results, f, indent=2)

    def _save_hypothesis_file(self,
                              task: str,
                              submission_id: str,
                              source_file: str) -> None:
        """Save the hypothesis file for future reference."""
        hyp_filename = f"{task}_{submission_id}_hyp.json"
        hyp_filepath = self.local_leaderboard / hyp_filename

        with open(hyp_filepath, "w") as out_f:
            with open(source_file, "r") as in_f:
                out_f.write(in_f.read())

    def prepare_model_for_submission(self,
                                     file: str,
                                     metadata: Dict[str, str],
                                     task: str,
                                     datasets: List[str],
                                     normalize: bool = False) -> None:
        """Prepare and evaluate a model submission.

        Args:
            file: Path to the hypothesis file
            metadata: Submission metadata containing 'submitted_by' and 'model_id'
            task: Task name
            datasets: List of dataset names to evaluate on
            normalize: Whether to apply text normalization
        """
        submission_id = self._create_submission_id(metadata)

        # Load hypothesis segments
        hyp_seglst = meeteval.io.load(file)

        # Evaluate on each dataset
        results = {}
        for dataset in datasets:
            ref_path = self.reference_base_path / task / f"{dataset}.json"

            if not ref_path.exists():
                raise FileNotFoundError(f"Reference file not found: {ref_path}")

            ref_seglst = meeteval.io.load(ref_path)
            sessions = ref_seglst.unique('session_id')

            # Filter hypotheses to match reference sessions
            local_hyps = hyp_seglst.filter(lambda seg: seg['session_id'] in sessions)

            if "alimeeting" in dataset or "aishell4" in dataset:
                import opencc
                converter = opencc.OpenCC('s2t.json')
                local_hyps = local_hyps.map(lambda seg: {**seg, "words": " ".join(list(converter.convert(seg["words"])))})
                ref_seglst = ref_seglst.map(lambda seg: {**seg, "words": " ".join(list(converter.convert(seg["words"])))})

            # Evaluate this dataset
            results[dataset] = self._evaluate_dataset(local_hyps, ref_seglst, normalize)

        # Update results file
        all_results = self._load_existing_results(task)
        all_results[submission_id] = {
            "model_link": metadata["model_link"],
            "model_id": metadata["model_id"],
            "submitted_by": metadata["submitted_by"],
            "results": results
        }

        self._save_results(task, all_results)
        self._save_hypothesis_file(task, submission_id, file)

    @staticmethod
    def make_clickable_model(model_name, link):
        return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'

    def get_leaderboard(self, task: str) -> pd.DataFrame:
        """Generate leaderboard DataFrame for a specific task.

        Args:
            task: Task name

        Returns:
            DataFrame containing leaderboard results
        """
        results_path = self._get_results_file_path(task)

        if not results_path.exists():
            return pd.DataFrame(columns=["No submissions yet"])

        with open(results_path) as f:
            results = json.load(f)

        if not results:
            return pd.DataFrame(columns=["No submissions yet"])

        # Build rows for DataFrame
        rows = []
        for content in results.values():
            row = {
                "Model ID": self.make_clickable_model(content["model_id"], content["model_link"]),
                "Submitted by": content["submitted_by"]
            }

            # Add dataset results
            for dataset, metrics in content["results"].items():
                row[dataset] = metrics.get("tcp_wer")

            rows.append(row)

        df = pd.DataFrame(rows)

        if df.empty:
            return df

        # Convert WER to percentage and format
        numeric_columns = df.select_dtypes(include=['number']).columns
        df[numeric_columns] *= 100.0
        df = df.round(2)
        df = df.fillna("-")

        return df