File size: 18,337 Bytes
9b63413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import os, json
from os.path import join as opj

import numpy as np
from scipy.ndimage import binary_dilation
import cv2
from PIL import Image, ImageDraw
import torchvision.transforms as T

from ..utils import split_procidx

def remove_postfix(fn):
    splits = fn.split("_")
    if len(splits) > 3: 
        return fn
    else:
        return splits[0]
    
def get_validation_pairs(
        data_root_dir, 
        is_paired, 
        data_type,
        category=None,
        proc_idx=0, 
        n_proc=1, 
        n_samples=None,
        prompt_version=None,
        text_file_postfix=None,
        use_dc_cloth=False,
        test_file_postfix=None,
        **kwargs,
    ):
    img_names = []
    c_names = []
    full_texts = []
    clothing_texts = []
    is_vitonhd = category is None
    assert data_type in ["train", "test"]
    if data_type == "train":
        pair_postfix = "pairs"
    else:
        if is_paired:
            pair_postfix = "pairs"
        else:
            pair_postfix = "unpairs"
    if test_file_postfix is not None:
        print(f"pair postfix : {test_file_postfix}")
        pair_postfix = test_file_postfix
    if not is_vitonhd:
        assert category in ["upper_body", "lower_body", "dresses"]
        data_root_dir = opj(data_root_dir, category)

    if not use_dc_cloth:
        txt_path = opj(data_root_dir, f"{data_type}_{pair_postfix}.txt")
    else:
        txt_path = opj(data_root_dir, f"{data_type}_{pair_postfix}_dc.txt")
        
    with open(txt_path, "r") as f:
        for line in f.readlines():
            img_name, c_name = line.strip().split()
            img_names.append(img_name)
            c_names.append(c_name)
    img_names, c_names = map(list, zip(*sorted(zip(img_names, c_names))))
    img_names = split_procidx(img_names, n_proc, proc_idx)
    c_names = split_procidx(c_names, n_proc, proc_idx)
    img_names = img_names[:n_samples]
    c_names = c_names[:n_samples]

    prompter = Prompter(category="upper_body" if is_vitonhd else category, version=prompt_version, data_type=data_type)
    if text_file_postfix is not None:
        if is_vitonhd:  # vitonhd
            textfile_bn = f"{data_type}_{text_file_postfix}"
        else:
            textfile_bn = text_file_postfix

        with open(opj(data_root_dir, textfile_bn), "rb") as f:
            text_dict = json.load(f)
    
    if text_file_postfix is None:
        full_texts = ["" for _ in range(len(img_names))]
        clothing_texts = ["" for _ in range(len(img_names))]
    else:
        for img_name, c_name in zip(img_names, c_names):
            if (category == "upper_body") and ("012143_0" in img_name):  # error
                continue
            
            img_fn = os.path.splitext(img_name)[0]
            c_fn = os.path.splitext(c_name)[0]
            if not is_vitonhd:
                img_fn = remove_postfix(img_fn)
                c_fn = remove_postfix(c_fn)
            
            person_dict = text_dict[img_fn]["person"]
            clothing_dict = text_dict[c_fn]["clothing"]
            if "person" in text_dict[c_fn].keys():
                clothing_person_dict = text_dict[c_fn]["person"]
            else:  
                clothing_person_dict = person_dict
            full_txt, clothing_txt = prompter.generate(person_dict, clothing_dict, clothing_person_dict)
                
            full_texts.append(full_txt)
            clothing_texts.append(clothing_txt)
    return img_names, c_names, full_texts, clothing_texts


class Prompter:
    def __init__(self, category, version, data_type="train"):
        assert category in ["upper_body", "lower_body", "dresses"]
        self.category = category
        self.version = version
        self.data_type = data_type 
        print(f"category : {self.category}, version : {self.version}")

    @staticmethod
    def create_prompt_v12(person_dict, clothing_dict, clothing_person_dict): 
        clothing_template = "a {category}, {material}, with {sleeve}, {neckline}"
        full_template = "a {body_shape} {gender} wears {fit_of_clothing}, {category} ({material}), {neckline}, {sleeve_rolling_style}, {tucking_style}. With {hair_length} hair, {pose} with hands {hand_pose}"
        
        # tucking style
        if "crop" in clothing_dict["upper cloth length"]:
            tucking_style = "untucked"
        else:
            tucking_style = person_dict["tucking style"]

        if "short" in clothing_dict["sleeve"]:
            sleeve_rolling_style = "short sleeve"
        else:
            sleeve_rolling_style = clothing_person_dict["sleeve rolling style"]

        clothing_prompt = clothing_template.format(
            category=clothing_dict['upper cloth category'],
            material=clothing_dict["material"],
            sleeve=clothing_dict["sleeve"],
            neckline=clothing_dict["neckline"],
        ).lower()

        full_prompt = full_template.format(
            gender=person_dict["gender"],
            body_shape=person_dict['body shape'],
            hair_length=person_dict['hair length'],
            pose=person_dict["pose"],
            hand_pose=person_dict['hand pose'],
            fit_of_clothing=person_dict['fit of upper cloth'],
            sleeve_rolling_style=sleeve_rolling_style,
            tucking_style=tucking_style,
            category=clothing_dict['upper cloth category'],
            material=clothing_dict["material"],
            neckline=clothing_dict["neckline"],
        ).lower()

        return full_prompt, clothing_prompt
    
    def generate(self, person_dict, clothing_dict, clothing_person_dict):
        full_prompt, clothing_prompt = self.create_prompt_v12(person_dict, clothing_dict, clothing_person_dict)
        return full_prompt, clothing_prompt

class IdentityTransform:
    def __call__(self, x):
        return x
    
def get_transform(txt_lst, **kwargs):
    trans_lst = []
    for tr in txt_lst:
        tr = tr.lower()
        if tr == "hflip":
            trans_lst.append(T.RandomHorizontalFlip())
        elif tr == "randomresizedcrop":
            trans_lst.append(T.RandomResizedCrop((kwargs["img_h"], kwargs["img_w"]), scale=(0.8, 1)))
        elif tr == "resize":
            trans_lst.append(T.Resize((kwargs["img_h"], kwargs["img_w"]), antialias=True))
        elif tr == "randomresizedcrop_dynamic":
            trans_lst.append(T.RandomResizedCrop((kwargs["img_h"], kwargs["img_w"]), scale=(0.5, 1), ratio=(0.3,2)))
        elif tr == "randomaffine":
            trans_lst.append(T.RandomAffine(degrees=0, translate=(0,0), scale=(0.8, 1.2)))
        elif tr == "randomaffine_dynamic":
            trans_lst.append(T.RandomAffine(degrees=(-30,30), translate=(0.1, 0.2), scale=(0.8, 1.2), fill=246))
        elif tr == "rotate":
            trans_lst.append(T.RandomAffine(degrees=(-30,30), fill=246))
        elif tr == "colorjitter":
            trans_lst.append(T.ColorJitter(
                brightness=(0.8,1.2),
                contrast=(0.8,1.2),
                saturation=(0.8,1.2),
                hue=(-0.1,0.1),
            ))
        elif tr == "colorjitter2":
            trans_lst.append(T.ColorJitter(
                brightness=0.4,
                contrast=0.4,
                saturation=0.4,
                hue=0.1,
            ))
        elif tr == "elastictransform":
            trans_lst.append(T.ElasticTransform())
        elif tr == "identity":
            trans_lst.append(IdentityTransform())
        else:
            raise NotImplementedError(tr)
    return trans_lst

label_map = {
    "background": 0,
    "hat": 1,
    "hair": 2,
    "sunglasses": 3,
    "upper_clothes": 4,
    "skirt": 5,
    "pants": 6,
    "dress": 7,
    "belt": 8,
    "left_shoe": 9,
    "right_shoe": 10,
    "head": 11,
    "left_leg": 12,
    "right_leg": 13,
    "left_arm": 14,
    "right_arm": 15,
    "bag": 16,
    "scarf": 17,
}

def extend_arm_mask(wrist, elbow, scale):
    wrist = elbow + scale * (wrist - elbow)
    return wrist


def hole_fill(img):
    img = np.pad(img[1:-1, 1:-1], pad_width=1, mode='constant', constant_values=0)
    img_copy = img.copy()
    mask = np.zeros((img.shape[0] + 2, img.shape[1] + 2), dtype=np.uint8)

    cv2.floodFill(img, mask, (0, 0), 255)
    img_inverse = cv2.bitwise_not(img)
    dst = cv2.bitwise_or(img_copy, img_inverse)
    return dst


def refine_mask(mask):
    contours, hierarchy = cv2.findContours(mask.astype(np.uint8),
                                           cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_L1)
    area = []
    for j in range(len(contours)):
        a_d = cv2.contourArea(contours[j], True)
        area.append(abs(a_d))
    refine_mask = np.zeros_like(mask).astype(np.uint8)
    if len(area) != 0:
        i = area.index(max(area))
        cv2.drawContours(refine_mask, contours, i, color=255, thickness=-1)

    return refine_mask

def get_mask_location(
        model_type, 
        category, 
        model_parse: Image.Image, 
        keypoint: dict, 
        width=384, height=512,
        radius=5,
        version=None,
        only_cloth=False,
        only_cloth_arm=False,
        only_cloth_armneck_with_dilate=False,
        densepose=None,
        use_pad=False,
):
    if category is None or category == "": category = "upper_body"
    im_parse = model_parse.resize((width, height), Image.NEAREST)
    parse_array = np.array(im_parse)

    if model_type == 'hd':
        arm_width = 60
    elif model_type == 'dc':
        arm_width = 45
    else:
        raise ValueError("model_type must be \'hd\' or \'dc\'!")

    parse_head = (parse_array == 1).astype(np.float32) + \
                 (parse_array == 3).astype(np.float32) + \
                 (parse_array == 11).astype(np.float32)

    parser_mask_fixed = (parse_array == label_map["left_shoe"]).astype(np.float32) + \
                        (parse_array == label_map["right_shoe"]).astype(np.float32) + \
                        (parse_array == label_map["hat"]).astype(np.float32) + \
                        (parse_array == label_map["sunglasses"]).astype(np.float32) + \
                        (parse_array == label_map["bag"]).astype(np.float32)


    parser_mask_changeable = (parse_array == label_map["background"]).astype(np.float32)

    arms_left = (parse_array == 14).astype(np.float32)
    arms_right = (parse_array == 15).astype(np.float32)

    if category == 'dresses':
        parse_mask = (parse_array == 7).astype(np.float32) + \
                     (parse_array == 4).astype(np.float32) + \
                     (parse_array == 5).astype(np.float32) + \
                     (parse_array == 6).astype(np.float32)

        parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))

    elif category == 'upper_body':
        parse_mask = (parse_array == 4).astype(np.float32) + (parse_array == 7).astype(np.float32)        
        parser_mask_fixed_lower_cloth = (parse_array == label_map["skirt"]).astype(np.float32) + \
                                        (parse_array == label_map["pants"]).astype(np.float32)
        
        parser_mask_fixed_nolower = parser_mask_fixed.copy()

        parser_mask_fixed += parser_mask_fixed_lower_cloth
        parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
    elif category == 'lower_body':
        parse_mask = (parse_array == 6).astype(np.float32) + \
                     (parse_array == 12).astype(np.float32) + \
                     (parse_array == 13).astype(np.float32) + \
                     (parse_array == 5).astype(np.float32)

        parser_mask_fixed += (parse_array == label_map["upper_clothes"]).astype(np.float32) + \
                             (parse_array == 14).astype(np.float32) + \
                             (parse_array == 15).astype(np.float32)
        parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
    else:
        raise NotImplementedError(f"category {category}")
    
    if only_cloth:
        mask = Image.fromarray(parse_mask.astype(np.uint8) * 255)
        mask_gray = Image.fromarray(parse_mask.astype(np.uint8) * 127)
        if use_pad:
            dil_mask = binary_dilation(mask, iterations=30)
            mask = Image.fromarray(dil_mask.astype(np.uint8)*255)
            mask_gray = Image.fromarray(dil_mask.astype(np.uint8)*127)
        return mask, mask_gray
    elif only_cloth_arm:
        parse_mask = parse_mask + (parse_array == 14).astype(np.float32) + (parse_array == 15).astype(np.float32)
        mask = Image.fromarray(parse_mask.astype(np.uint8) * 255)
        mask_gray = Image.fromarray(parse_mask.astype(np.uint8) * 127)
        return mask, mask_gray
    elif only_cloth_armneck_with_dilate:
        parse_mask = parse_mask + (parse_array == 14).astype(np.float32) + (parse_array == 15).astype(np.float32)
        parse_mask = cv2.dilate(parse_mask.astype(np.uint8), np.ones((3,3), dtype=np.uint8), iterations=3)
        parse_mask = np.logical_or(parse_mask, (parse_array == 18).astype(np.float32))
        mask = Image.fromarray(parse_mask.astype(np.uint8) * 255)
        mask_gray = Image.fromarray(parse_mask.astype(np.uint8) * 127)
        return mask, mask_gray


    # Load pose points
    pose_data = keypoint["pose_keypoints_2d"]
    pose_data = np.array(pose_data)
    pose_data = pose_data.reshape((-1, 2))

    im_arms_left = Image.new('L', (width, height))
    im_arms_right = Image.new('L', (width, height))
    arms_draw_left = ImageDraw.Draw(im_arms_left)
    arms_draw_right = ImageDraw.Draw(im_arms_right)
    if category == 'dresses' or category == 'upper_body':
        shoulder_right = np.multiply(tuple(pose_data[2][:2]), height / 512.0)
        shoulder_left = np.multiply(tuple(pose_data[5][:2]), height / 512.0)
        elbow_right = np.multiply(tuple(pose_data[3][:2]), height / 512.0)
        elbow_left = np.multiply(tuple(pose_data[6][:2]), height / 512.0)
        wrist_right = np.multiply(tuple(pose_data[4][:2]), height / 512.0)
        wrist_left = np.multiply(tuple(pose_data[7][:2]), height / 512.0)

        hip_right = np.multiply(tuple(pose_data[8][:2]), height / 512.0)
        hip_left = np.multiply(tuple(pose_data[11][:2]), height / 512.0)

        ARM_LINE_WIDTH = int(arm_width / 512 * height)
        size_left = [shoulder_left[0] - ARM_LINE_WIDTH // 2, shoulder_left[1] - ARM_LINE_WIDTH // 2, shoulder_left[0] + ARM_LINE_WIDTH // 2, shoulder_left[1] + ARM_LINE_WIDTH // 2]
        size_right = [shoulder_right[0] - ARM_LINE_WIDTH // 2, shoulder_right[1] - ARM_LINE_WIDTH // 2, shoulder_right[0] + ARM_LINE_WIDTH // 2,
                      shoulder_right[1] + ARM_LINE_WIDTH // 2]

        if wrist_right[0] <= 1. and wrist_right[1] <= 1.:
            im_arms_right = arms_right
        else:
            wrist_right = extend_arm_mask(wrist_right, elbow_right, 1.2)
            arms_draw_right.line(np.concatenate((shoulder_right, elbow_right, wrist_right)).astype(np.uint16).tolist(), 'white', ARM_LINE_WIDTH, 'curve')
            arms_draw_right.arc(size_right, 0, 360, 'white', ARM_LINE_WIDTH // 2)

        if wrist_left[0] <= 1. and wrist_left[1] <= 1.:
            im_arms_left = arms_left
        else:
            wrist_left = extend_arm_mask(wrist_left, elbow_left, 1.2)
            arms_draw_left.line(np.concatenate((wrist_left, elbow_left, shoulder_left)).astype(np.uint16).tolist(), 'white', ARM_LINE_WIDTH, 'curve')
            arms_draw_left.arc(size_left, 0, 360, 'white', ARM_LINE_WIDTH // 2)

            
        if version == "v9": 
            pass
        else:
            hands_left = np.logical_and(np.logical_not(im_arms_left), arms_left)
            hands_right = np.logical_and(np.logical_not(im_arms_right), arms_right)
            hands = hands_left + hands_right
            parser_mask_fixed += hands
            if category == 'upper_body':
                parser_mask_fixed_nolower += hands

    parser_mask_fixed = np.logical_or(parser_mask_fixed, parse_head)
    if category == 'upper_body':
        parser_mask_fixed_nolower = np.logical_or(parser_mask_fixed_nolower, parse_head)
    parse_mask = cv2.dilate(parse_mask, np.ones((radius, radius), np.uint16), iterations=5)
    if category == 'dresses' or category == 'upper_body':
        neck_mask = (parse_array == 18).astype(np.float32)
        neck_mask = cv2.dilate(neck_mask, np.ones((radius, radius), np.uint16), iterations=1)
        neck_mask = np.logical_and(neck_mask, np.logical_not(parse_head))
        parse_mask = np.logical_or(parse_mask, neck_mask)
        
        if version == 'v7':
            arm_mask = cv2.dilate(np.logical_or(im_arms_left, im_arms_right).astype('float32'), np.ones((5, 5), np.uint16), iterations=15)
        else:
            arm_mask = cv2.dilate(np.logical_or(im_arms_left, im_arms_right).astype('float32'), np.ones((5, 5), np.uint16), iterations=4)
        parse_mask += np.logical_or(parse_mask, arm_mask)

    parse_mask = np.logical_and(parser_mask_changeable, np.logical_not(parse_mask))

    parse_mask_total = np.logical_or(parse_mask, parser_mask_fixed)
    inpaint_mask = 1 - parse_mask_total
    img = np.where(inpaint_mask, 255, 0)
    dst = hole_fill(img.astype(np.uint8))
    dst = refine_mask(dst)
    if version not in ["v5", "v6"]:
        inpaint_mask = dst / 255 * 1

    if version is None or "official" in version:
        pass
    elif version == 'v9':
        inpaint_mask = dst
        hip_x1, hip_y1 = hip_left.astype(np.int64)
        hip_x2, hip_y2 = hip_right.astype(np.int64)
        inpaint_mask[hip_y1, hip_x1] = 255
        inpaint_mask[hip_y2, hip_x2] = 255
        coords = np.column_stack(np.where(inpaint_mask == 255))
        y_min, x_min = coords.min(axis=0)
        y_max, x_max = coords.max(axis=0)

        inpaint_mask[y_min:y_max+1, x_min:x_max+1] = 255
        inpaint_mask = np.logical_and(inpaint_mask, np.logical_not(parser_mask_fixed_nolower))
        inpaint_mask = hole_fill(inpaint_mask.astype(np.uint8))
        inpaint_mask = np.logical_and(inpaint_mask, np.logical_not(parse_head))
        inpaint_mask = inpaint_mask.astype(np.uint8)
    else:
        raise NotImplementedError(f"upper body version {version}")

        
    mask = Image.fromarray(inpaint_mask.astype(np.uint8) * 255)
    mask_gray = Image.fromarray(inpaint_mask.astype(np.uint8) * 127)

    return mask, mask_gray