File size: 11,048 Bytes
9b63413 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import os
from os.path import join as opj
import json
import math
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import torch
from torchvision.transforms import functional as TF
from safetensors.torch import load_file as sf_load_file
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def zero_rank_print_(s):
if "LOCAL_RANK" in os.environ.keys():
if int(os.environ["LOCAL_RANK"]) == 0:
print(s)
else:
print(s)
def save_args(args, to_path):
with open(to_path, "w") as f:
json.dump(args.__dict__, f, indent=2)
def load_args(from_path):
with open(from_path, "r") as f:
args_dict = json.load(f)
return args_dict
def load_file(p):
if p.endswith(".safetensors"):
cp = sf_load_file(p)
else:
cp = torch.load(p, map_location="cpu")
return cp
def tensor2pil(tensor, is_mask=False):
tensor = tensor.cpu()
if is_mask:
return Image.fromarray(np.uint8(tensor[0][0].numpy() * 255)).convert("RGB")
else:
tensor = (tensor[0].permute(1,2,0)+1) * 127.5
return Image.fromarray(np.uint8(tensor))
def concat_pil_imgs(pil_img_lst):
max_img_h = -1
ratio_lst = []
for pil_img in pil_img_lst:
img_w, img_h = pil_img.size
max_img_h = max(max_img_h, img_h)
ratio_lst.append(img_w / img_h)
new_img_lst = []
for pil_img, ratio in zip(pil_img_lst, ratio_lst):
np_img = np.array(pil_img.resize((int(ratio * max_img_h), max_img_h)))
if np_img.ndim == 2:
np_img = np.stack([np_img] * 3, axis=-1)
if np_img.shape[-1] == 1:
np_img = np.concatenate([np_img]*3, axis=-1)
new_img_lst.append(np_img)
concat_img = np.concatenate(new_img_lst, axis=1)
return Image.fromarray(concat_img)
@torch.no_grad()
def get_attn_map(hidden_states, encoder_hidden_states, attn, norm_axis=-1):
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
query = attn.to_q(hidden_states)
key = attn.to_k(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
scale_factor = 1 / math.sqrt(query.size(-1))
attn_weight = query @ key.transpose(-2, -1) * scale_factor
attn_wieght_logit = attn_weight
attn_weight = torch.softmax(attn_weight, dim=-1)
attn_weight = attn_weight.cpu().mean(dim=1)
min_ = attn_weight.min(dim=norm_axis, keepdims=True)[0]
max_ = attn_weight.max(dim=norm_axis, keepdims=True)[0]
norm_attn_weight = (attn_weight - min_) / (max_ - min_) * 255.0
norm_attn_weight = norm_attn_weight.numpy().astype(np.uint8)
return norm_attn_weight, attn_wieght_logit
def pad_resize(img, trg_h, trg_w, pixel_value, pad_type=None):
if pad_type is None:
img = img.resize((trg_w, trg_h))
else:
cur_w, cur_h = img.size
pad_w = max(trg_w - cur_w, 0)
pad_h = max(trg_h - cur_h, 0)
pad_left = pad_w // 2
pad_right = pad_w - pad_left
pad_top = pad_h // 2
pad_bottom = pad_h - pad_top
padding = (pad_left, pad_top, pad_right, pad_bottom)
img = TF.pad(img, padding=padding, fill=pixel_value, padding_mode=pad_type)
return img
def get_inputs(
root_dir, data_type, pose_type, img_bn, c_bn, img_h, img_w, train_folder_name, test_folder_name,
# use_repaint, train_folder_name_for_interm_cloth_mask=None, test_repaint_folder_name=None,
# return_inversion_latents=False,
category=None, pad_type=None, use_dc_cloth=False
):
is_vitonhd = category is None or category == ""
img_fn = os.path.splitext(img_bn)[0]
if is_vitonhd:
if data_type == "train":
folder_name = train_folder_name if train_folder_name is not None else "train"
else:
folder_name = test_folder_name if test_folder_name is not None else "test"
person = Image.open(opj(root_dir, f"{folder_name}/image", img_bn)).convert("RGB").resize((img_w, img_h))
mask = Image.open(opj(root_dir, f"{folder_name}/agnostic-mask", f"{img_fn}_mask.png")).convert("RGB").resize((img_w, img_h))
cloth = Image.open(opj(root_dir, f"{folder_name}/cloth", c_bn)).convert("RGB").resize((img_w, img_h))
if pose_type == "openpose": pose = Image.open(opj(root_dir, f"{folder_name}/dwpose", f"{img_fn}.png")).convert("RGB").resize((img_w, img_h))
elif pose_type == "openpose_thick": pose = Image.open(opj(root_dir, f"{folder_name}/dwpose_thick", f"{img_fn}.png")).convert("RGB").resize((img_w, img_h))
elif pose_type == "densepose": pose = Image.open(opj(root_dir, f"{folder_name}/image-densepose", f"{img_fn}.jpg")).convert("RGB").resize((img_w, img_h))
person = Image.open(opj(root_dir, f"{folder_name}/image", img_bn)).convert("RGB")
mask = Image.open(opj(root_dir, f"{folder_name}/agnostic-mask", f"{img_fn}_mask.png")).convert("RGB")
if not use_dc_cloth:
cloth = Image.open(opj(root_dir, f"{folder_name}/cloth", c_bn)).convert("RGB")
else:
cloth = Image.open(opj(root_dir, f"{folder_name}/cloth_dc", c_bn)).convert("RGB")
if pose_type == "openpose": pose = Image.open(opj(root_dir, f"{folder_name}/dwpose", f"{img_fn}.png")).convert("RGB")
elif pose_type == "openpose_thick": pose = Image.open(opj(root_dir, f"{folder_name}/dwpose_thick", f"{img_fn}.png")).convert("RGB")
elif pose_type == "densepose": pose = Image.open(opj(root_dir, f"{folder_name}/image-densepose", f"{img_fn}.jpg")).convert("RGB")
person = pad_resize(person, img_h, img_w, (255,255,255), pad_type=pad_type)
if pad_type is None or pad_type == "resize":
other_pad_type = None
else:
other_pad_type = "constant"
mask = pad_resize(mask, img_h, img_w, (0,0,0), pad_type=other_pad_type)
cloth = pad_resize(cloth, img_h, img_w, (255,255,255), pad_type=other_pad_type)
pose = pad_resize(pose, img_h, img_w, (0,0,0), pad_type=other_pad_type)
return person, mask, pose, cloth
def get_leanable_param_count(model_name, model):
named_param = model.named_parameters()
total_count = 0
lparam_count = 0
not_lparam_count = 0
for name, param in named_param:
if param.requires_grad:
lparam_count += 1
else:
not_lparam_count += 1
total_count += 1
return f" {model_name} | total : {total_count}, lparam : {lparam_count}, not_lparam : {not_lparam_count}"
def split_procidx(ps, n_proc, proc_idx):
len_ps = len(ps)
if len_ps % n_proc == 0:
n_infer = len_ps // n_proc
else:
n_infer = len_ps // n_proc + 1
start_idx = int(proc_idx * n_infer)
end_idx = start_idx + n_infer
ps = ps[start_idx:end_idx]
return ps
def get_tensor(img, h, w, is_mask=False):
img = np.array(img.resize((w, h))).astype(np.float32)
if not is_mask:
img = (img / 127.5) - 1.0
else:
img = (img < 128).astype(np.float32)[:,:,None]
return torch.from_numpy(img)[None].cuda()
def get_batch(image, cloth, densepose, agn_img, agn_mask, img_h, img_w):
batch = dict()
batch["image"] = get_tensor(image, img_h, img_w)
batch["cloth"] = get_tensor(cloth, img_h, img_w)
batch["image_densepose"] = get_tensor(densepose, img_h, img_w)
batch["agn"] = get_tensor(agn_img, img_h, img_w)
batch["agn_mask"] = get_tensor(agn_mask, img_h, img_w, is_mask=True)
batch["txt"] = ""
return batch
def tensor2img(x):
'''
x : [BS x c x H x W] or [c x H x W]
'''
if x.ndim == 3:
x = x.unsqueeze(0)
BS, C, H, W = x.shape
x = x.permute(0,2,3,1).reshape(-1, W, C).detach().cpu().numpy()
x = np.clip(x, -1, 1)
x = (x+1)/2
x = np.uint8(x*255.0)
if x.shape[-1] == 1:
x = np.concatenate([x,x,x], axis=-1)
return x
def center_crop(image):
width, height = image.size
new_height = height
new_width = height*3/4
left = (width - new_width)/2
top = (height - new_height)/2
right = (width + new_width)/2
bottom = (height + new_height)/2
image = image.crop((left, top, right, bottom))
return image
def get_lora_target_modules(named_modules, all_names, any_names, not_names):
output = []
lora_modules = [torch.nn.Linear, torch.nn.Embedding, torch.nn.Conv2d]
for key, module in named_modules:
if all(all_name in key for all_name in all_names) and any(any_name in key for any_name in any_names) and not any(not_name in key for not_name in not_names):
for lora_module in lora_modules:
if isinstance(module, lora_module):
output.append(key)
return output
def unfreeze_unet(unet, all_names, any_names, not_names):
for key, param in unet.named_parameters():
if all(all_name in key for all_name in all_names) and any(any_name in key for any_name in any_names) and not any(not_name in key for not_name in not_names):
param.requires_grad_(True)
def get_txt(jf, person_id, clothing_id=None, prompt_version="v5", category="upper_body", verbose=True):
from .data.data_utils import Prompter
pt = Prompter(category=category, version=prompt_version)
if clothing_id is None:
clothing_id = person_id
person_dict = jf[person_id]["person"]
clothing_dict = jf[clothing_id]["clothing"]
clothing_person_dict = jf[clothing_id]["person"]
full_txt, clothing_txt = pt.generate(person_dict, clothing_dict, clothing_person_dict)
if verbose:
print(full_txt)
print("\n")
print(clothing_txt)
print("\n\n")
def concat_save_images(ps_lst, save_dir, cut_right_two=False):
import cv2
from tqdm import tqdm
os.makedirs(save_dir, exist_ok=True)
min_value = min([len(ps) for ps in ps_lst])
for i in tqdm(range(min_value), total=min_value):
concat = []
for ps in ps_lst:
p = ps[i]
concat.append(cv2.imread(p))
concat = np.concatenate(concat, axis=1)
if cut_right_two:
concat = concat[:,:-2*768]
save_p = opj(save_dir, os.path.basename(p))
cv2.imwrite(save_p, concat) |