File size: 11,048 Bytes
9b63413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import os
from os.path import join as opj
import json
import math

import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import torch
from torchvision.transforms import functional as TF
from safetensors.torch import load_file as sf_load_file

class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count

def zero_rank_print_(s):
    if "LOCAL_RANK" in os.environ.keys():
        if int(os.environ["LOCAL_RANK"]) == 0: 
            print(s)
    else:
        print(s)

def save_args(args, to_path):
    with open(to_path, "w") as f:
        json.dump(args.__dict__, f, indent=2)
        
def load_args(from_path):
    with open(from_path, "r") as f:
        args_dict = json.load(f)
    return args_dict

def load_file(p):
    if p.endswith(".safetensors"):
        cp = sf_load_file(p)
    else:
        cp = torch.load(p, map_location="cpu")
    return cp

def tensor2pil(tensor, is_mask=False):
    tensor = tensor.cpu()
    if is_mask:
        return Image.fromarray(np.uint8(tensor[0][0].numpy() * 255)).convert("RGB")
    else:
        tensor = (tensor[0].permute(1,2,0)+1) * 127.5
        return Image.fromarray(np.uint8(tensor))

def concat_pil_imgs(pil_img_lst):
    max_img_h = -1
    ratio_lst = []
    for pil_img in pil_img_lst:
        img_w, img_h = pil_img.size
        max_img_h = max(max_img_h, img_h)
        ratio_lst.append(img_w / img_h)

    
    new_img_lst = []
    for pil_img, ratio in zip(pil_img_lst, ratio_lst):
        np_img = np.array(pil_img.resize((int(ratio * max_img_h), max_img_h)))
        if np_img.ndim == 2:
            np_img = np.stack([np_img] * 3, axis=-1)
        if np_img.shape[-1] == 1:
            np_img = np.concatenate([np_img]*3, axis=-1)
        new_img_lst.append(np_img)
    
    concat_img = np.concatenate(new_img_lst, axis=1)
    return Image.fromarray(concat_img)

@torch.no_grad()
def get_attn_map(hidden_states, encoder_hidden_states, attn, norm_axis=-1):
    input_ndim = hidden_states.ndim

    if input_ndim == 4:
        batch_size, channel, height, width = hidden_states.shape
        hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

    batch_size, sequence_length, _ = (
        hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
    )

    query = attn.to_q(hidden_states)
    key = attn.to_k(encoder_hidden_states)

    inner_dim = key.shape[-1]
    head_dim = inner_dim // attn.heads

    query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
    key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
    scale_factor = 1 / math.sqrt(query.size(-1))
    
    attn_weight = query @ key.transpose(-2, -1) * scale_factor
    attn_wieght_logit = attn_weight
    attn_weight = torch.softmax(attn_weight, dim=-1)
    attn_weight = attn_weight.cpu().mean(dim=1)

    
    min_ = attn_weight.min(dim=norm_axis, keepdims=True)[0]
    max_ = attn_weight.max(dim=norm_axis, keepdims=True)[0]
    norm_attn_weight = (attn_weight - min_) / (max_ - min_) * 255.0
    norm_attn_weight = norm_attn_weight.numpy().astype(np.uint8)
    return norm_attn_weight, attn_wieght_logit

def pad_resize(img, trg_h, trg_w, pixel_value, pad_type=None):
    if pad_type is None:
        img = img.resize((trg_w, trg_h))
    else:
        cur_w, cur_h = img.size
        pad_w = max(trg_w - cur_w, 0)
        pad_h = max(trg_h - cur_h, 0)

        pad_left = pad_w // 2
        pad_right = pad_w - pad_left
        pad_top = pad_h // 2
        pad_bottom = pad_h - pad_top

        padding = (pad_left, pad_top, pad_right, pad_bottom)

        img = TF.pad(img, padding=padding, fill=pixel_value, padding_mode=pad_type)
    return img
        
def get_inputs(
        root_dir, data_type, pose_type, img_bn, c_bn, img_h, img_w, train_folder_name, test_folder_name, 
        # use_repaint, train_folder_name_for_interm_cloth_mask=None, test_repaint_folder_name=None,
        # return_inversion_latents=False,
        category=None, pad_type=None, use_dc_cloth=False
):
    is_vitonhd = category is None or category == ""
    img_fn = os.path.splitext(img_bn)[0]
    if is_vitonhd:
        if data_type == "train": 
            folder_name = train_folder_name if train_folder_name is not None else "train"
        else: 
            folder_name = test_folder_name if test_folder_name is not None else "test"
        
        person = Image.open(opj(root_dir, f"{folder_name}/image", img_bn)).convert("RGB").resize((img_w, img_h))
        mask = Image.open(opj(root_dir, f"{folder_name}/agnostic-mask", f"{img_fn}_mask.png")).convert("RGB").resize((img_w, img_h))
        cloth = Image.open(opj(root_dir, f"{folder_name}/cloth", c_bn)).convert("RGB").resize((img_w, img_h))

        if pose_type == "openpose": pose = Image.open(opj(root_dir, f"{folder_name}/dwpose", f"{img_fn}.png")).convert("RGB").resize((img_w, img_h))
        elif pose_type == "openpose_thick": pose = Image.open(opj(root_dir, f"{folder_name}/dwpose_thick", f"{img_fn}.png")).convert("RGB").resize((img_w, img_h))
        elif pose_type == "densepose": pose = Image.open(opj(root_dir, f"{folder_name}/image-densepose", f"{img_fn}.jpg")).convert("RGB").resize((img_w, img_h))
            
        person = Image.open(opj(root_dir, f"{folder_name}/image", img_bn)).convert("RGB")
        mask = Image.open(opj(root_dir, f"{folder_name}/agnostic-mask", f"{img_fn}_mask.png")).convert("RGB")
        if not use_dc_cloth:
            cloth = Image.open(opj(root_dir, f"{folder_name}/cloth", c_bn)).convert("RGB")
        else:
            cloth = Image.open(opj(root_dir, f"{folder_name}/cloth_dc", c_bn)).convert("RGB")

        if pose_type == "openpose": pose = Image.open(opj(root_dir, f"{folder_name}/dwpose", f"{img_fn}.png")).convert("RGB")
        elif pose_type == "openpose_thick": pose = Image.open(opj(root_dir, f"{folder_name}/dwpose_thick", f"{img_fn}.png")).convert("RGB")
        elif pose_type == "densepose": pose = Image.open(opj(root_dir, f"{folder_name}/image-densepose", f"{img_fn}.jpg")).convert("RGB")

        person = pad_resize(person, img_h, img_w, (255,255,255), pad_type=pad_type)
        if pad_type is None or pad_type == "resize":
            other_pad_type = None
        else:
            other_pad_type = "constant"
        mask = pad_resize(mask, img_h, img_w, (0,0,0), pad_type=other_pad_type)
        cloth = pad_resize(cloth, img_h, img_w, (255,255,255), pad_type=other_pad_type)
        pose = pad_resize(pose, img_h, img_w, (0,0,0), pad_type=other_pad_type)

    return person, mask, pose, cloth

def get_leanable_param_count(model_name, model):
    named_param = model.named_parameters()
    total_count = 0
    lparam_count = 0
    not_lparam_count = 0
    for name, param in named_param:
        if param.requires_grad:
            lparam_count += 1
        else:
            not_lparam_count += 1
        total_count += 1
    return f"  {model_name} | total : {total_count}, lparam : {lparam_count}, not_lparam : {not_lparam_count}"

def split_procidx(ps, n_proc, proc_idx):
    len_ps = len(ps)
    if len_ps % n_proc == 0:
        n_infer = len_ps // n_proc
    else:
        n_infer = len_ps // n_proc + 1
    
    start_idx = int(proc_idx * n_infer)
    end_idx = start_idx + n_infer
    ps = ps[start_idx:end_idx]
    return ps

def get_tensor(img, h, w, is_mask=False):
    img = np.array(img.resize((w, h))).astype(np.float32)
    if not is_mask:
        img = (img / 127.5) - 1.0
    else:
        img = (img < 128).astype(np.float32)[:,:,None]
    return torch.from_numpy(img)[None].cuda()
    
def get_batch(image, cloth, densepose, agn_img, agn_mask, img_h, img_w):
    batch = dict()
    batch["image"] = get_tensor(image, img_h, img_w)
    batch["cloth"] = get_tensor(cloth, img_h, img_w)
    batch["image_densepose"] = get_tensor(densepose, img_h, img_w)
    batch["agn"] = get_tensor(agn_img, img_h, img_w)
    batch["agn_mask"] = get_tensor(agn_mask, img_h, img_w, is_mask=True)
    batch["txt"] = ""
    return batch

def tensor2img(x):
    '''
    x : [BS x c x H x W] or [c x H x W]
    '''
    if x.ndim == 3:
        x = x.unsqueeze(0)
    BS, C, H, W = x.shape
    x = x.permute(0,2,3,1).reshape(-1, W, C).detach().cpu().numpy()
    x = np.clip(x, -1, 1)
    x = (x+1)/2
    x = np.uint8(x*255.0)
    if x.shape[-1] == 1:
        x = np.concatenate([x,x,x], axis=-1)
    return x

def center_crop(image):
    width, height = image.size
    new_height = height
    new_width = height*3/4
    left = (width - new_width)/2
    top = (height - new_height)/2
    right = (width + new_width)/2
    bottom = (height + new_height)/2

    image = image.crop((left, top, right, bottom))
    return image

def get_lora_target_modules(named_modules, all_names, any_names, not_names):
    output = []
    lora_modules = [torch.nn.Linear, torch.nn.Embedding, torch.nn.Conv2d]
    for key, module in named_modules:
        if all(all_name in key for all_name in all_names) and any(any_name in key for any_name in any_names) and not any(not_name in key for not_name in not_names):
            for lora_module in lora_modules:
                if isinstance(module, lora_module):
                    output.append(key)
    return output

    
def unfreeze_unet(unet, all_names, any_names, not_names):
    for key, param in unet.named_parameters():
        if all(all_name in key for all_name in all_names) and any(any_name in key for any_name in any_names) and not any(not_name in key for not_name in not_names):
            param.requires_grad_(True)


def get_txt(jf, person_id, clothing_id=None, prompt_version="v5", category="upper_body", verbose=True):
    from .data.data_utils import Prompter
    pt = Prompter(category=category, version=prompt_version)
    if clothing_id is None:
        clothing_id = person_id
    person_dict = jf[person_id]["person"]
    clothing_dict = jf[clothing_id]["clothing"]
    clothing_person_dict = jf[clothing_id]["person"]
    full_txt, clothing_txt = pt.generate(person_dict, clothing_dict, clothing_person_dict)
    if verbose:
        print(full_txt)
        print("\n")
        print(clothing_txt)
        print("\n\n")

def concat_save_images(ps_lst, save_dir, cut_right_two=False):
    import cv2
    from tqdm import tqdm
    os.makedirs(save_dir, exist_ok=True)

    min_value = min([len(ps) for ps in ps_lst])
    for i in tqdm(range(min_value), total=min_value):
        concat = []
        for ps in ps_lst:
            p = ps[i]
            concat.append(cv2.imread(p))
        concat = np.concatenate(concat, axis=1)
        if cut_right_two:
            concat = concat[:,:-2*768]
        
        save_p = opj(save_dir, os.path.basename(p))
        cv2.imwrite(save_p, concat)