import os import pdb import sys from pathlib import Path import onnxruntime as ort PROJECT_ROOT = Path(__file__).absolute().parents[0].absolute() sys.path.insert(0, str(PROJECT_ROOT)) import torch from parsing_api import onnx_inference class Parsing: def __init__(self, gpu_id: int): self.gpu_id = gpu_id # torch.cuda.set_device(gpu_id) session_options = ort.SessionOptions() session_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL session_options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL #### jho modified >>>> providers = [ ('CUDAExecutionProvider', { 'device_id': gpu_id, }), 'CPUExecutionProvider', ] self.session = ort.InferenceSession(os.path.join(Path(__file__).absolute().parents[2].absolute(), 'checkpoints/humanparsing/parsing_atr.onnx'), sess_options=session_options, providers=providers) self.lip_session = ort.InferenceSession(os.path.join(Path(__file__).absolute().parents[2].absolute(), 'checkpoints/humanparsing/parsing_lip.onnx'), sess_options=session_options, providers=providers) #### jho modified <<<< # session_options.add_session_config_entry('gpu_id', str(gpu_id)) # self.session = ort.InferenceSession(os.path.join(Path(__file__).absolute().parents[2].absolute(), 'checkpoints/humanparsing/parsing_atr.onnx'), # sess_options=session_options, providers=['CUDAExecutionProvider']) # self.lip_session = ort.InferenceSession(os.path.join(Path(__file__).absolute().parents[2].absolute(), 'checkpoints/humanparsing/parsing_lip.onnx'), # sess_options=session_options, providers=['CUDAExecutionProvider']) print(f"parsing init done (gpu: {gpu_id})") def __call__(self, input_image): torch.cuda.set_device(self.gpu_id) parsed_image, face_mask = onnx_inference(self.session, self.lip_session, input_image) return parsed_image, face_mask