Spaces:
Running
Running
File size: 4,286 Bytes
542066c b9f7439 542066c 3344287 542066c b9f7439 542066c 3344287 542066c 3344287 542066c 3344287 542066c b9f7439 542066c b9f7439 3344287 b9f7439 bc9bfc5 3344287 b9f7439 7499f7b b9b45f1 b9f7439 3344287 b9f7439 3344287 b9f7439 efce5a0 b9f7439 efce5a0 3344287 efce5a0 d860d4c b9f7439 efce5a0 3344287 efce5a0 d860d4c b9f7439 efce5a0 e6ec576 efce5a0 b9f7439 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
MODEL_INFO = ["Model", "Venue", "Evaluated by"]
ALL_RESULTS = [
"TotalScore↑",
"Aesthetics↑",
"MotionSmoothness↑",
"MotionAmplitude↑",
"FaceSim↑",
"GmeScore↑",
"NexusScore↑",
"NaturalScore↑",
]
OPEN_DOMAIN_RESULTS = [
"TotalScore↑",
"Aesthetics↑",
"MotionSmoothness↑",
"MotionAmplitude↑",
"FaceSim↑",
"GmeScore↑",
"NexusScore↑",
"NaturalScore↑",
]
HUMAN_DOMAIN_RESULTS = [
"TotalScore↑",
"Aesthetics↑",
"MotionSmoothness↑",
"MotionAmplitude↑",
"FaceSim↑",
"GmeScore↑",
"NaturalScore↑",
]
SINGLE_DOMAIN_RESULTS = [
"TotalScore↑",
"Aesthetics↑",
"MotionSmoothness↑",
"MotionAmplitude↑",
"FaceSim↑",
"GmeScore↑",
"NexusScore↑",
"NaturalScore↑",
]
NEW_DATA_TITLE_TYPE = [
"markdown",
"markdown",
"number",
"number",
"number",
"number",
"number",
"number",
"number",
]
CSV_DIR_OPEN_DOMAIN_RESULTS = "./file_v1.1/results_Open-Domain.csv"
CSV_DIR_HUMAN_DOMAIN_RESULTS = "./file_v1.1/results_Human-Domain.csv"
CSV_DIR_SINGLE_DOMAIN_RESULTS = "./file_v1.1/results_Single-Domain.csv"
COLUMN_NAMES = MODEL_INFO + ALL_RESULTS
COLUMN_NAMES_HUMAN = MODEL_INFO + HUMAN_DOMAIN_RESULTS
LEADERBORAD_INTRODUCTION = """
# OpenS2V-Eval-1.1 Leaderboard
Welcome to the leaderboard of the OpenS2V-Eval-v1.1!
The **v1.1** version adds motion smoothness on top of **v1.0** to provide a more accurate measurement of motion quality.
🏆 OpenS2V-Eval is a core component of **OpenS2V-Nexus**, designed to establish a foundational infrastructure for *Subject-to-Video* (S2V) generation. It presents 180 prompts spanning seven major categories of S2V, incorporating both real and synthetic test data. To better align evaluation with human preferences, it introduce three new automatic metrics—NexusScore, NaturalScore, and GmeScore—that independently assess subject consistency, naturalness, and textual relevance in generated videos.
If you like our project, please give us a star ⭐ on GitHub for the latest update.
[GitHub](https://github.com/PKU-YuanGroup/OpenS2V-Nexus) | [Arxiv](https://arxiv.org/) | [Home Page](https://pku-yuangroup.github.io/OpenS2V-Nexus/) | [OpenS2V-Eval](https://huggingface.co/datasets/BestWishYsh/OpenS2V-Eval) | [OpenS2V-5M](https://huggingface.co/datasets/BestWishYsh/OpenS2V-5M) | [OpenS2V-Eval-v1.0-LeaderBoard](https://huggingface.co/spaces/BestWishYsh/OpenS2V-Eval/tree/main/file_v1.0)
"""
SUBMIT_INTRODUCTION = """# Submission Guidelines
1. Fill in *'Model Name'* if it is your first time to submit your result **or** Fill in *'Revision Model Name'* if you want to update your result.
2. Fill in your home page to *'Model Link'* and your team name to *'Your Team Name'*.
3. After evaluation, follow the guidance in the [github repository](https://github.com/PKU-YuanGroup/OpenS2V-Nexus) to obtain `model_name.json` and upload it here.
4. Click the *'Submit Eval'* button.
5. Click *'Refresh'* to obtain the updated leaderboard.
"""
TABLE_INTRODUCTION = """In the table below, we use six dimensions as the primary evaluation metrics for each task.
1. Visual Quality: Aesthetics.
2. Motion Quality: Motion Smoothness and Motion Amplitude.
3. Text Relevance: GmeScore.
4. Subject Consistency: FaceSim and NexusScore.
5. Subject Naturalness: NaturalScore.
"""
TABLE_INTRODUCTION_HUMAN = """In the table below, we use six dimensions as the primary evaluation metrics for each task.
1. Visual Quality: Aesthetics.
2. Motion Quality: Motion Smoothness and Motion Amplitude.
3. Text Relevance: GmeScore.
4. Subject Consistency: FaceSim.
5. Naturalness: NaturalScore.
"""
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@article{yuan2025opens2v,
title={OpenS2V-Nexus: A Detailed Benchmark and Million-Scale Dataset for Subject-to-Video Generation},
author={Yuan, Shenghai and He, Xianyi and Deng, Yufan and Ye, Yang and Huang, Jinfa and Lin, Bin and Luo, Jiebo and Yuan, Li},
journal={arXiv preprint arXiv:2505.20292},
year={2025}
}"""
|