Spaces:
Running
Running
File size: 8,944 Bytes
140ba3d 5f09953 2487f72 2bdeddf 2487f72 868acab 140ba3d 9f00d49 140ba3d 17483c8 9f00d49 140ba3d 44a607c 140ba3d 44a607c e7aff49 140ba3d 44a607c 140ba3d 44a607c 140ba3d 44a607c 140ba3d 44a607c 140ba3d 9f00d49 e7aff49 140ba3d e7aff49 140ba3d e7aff49 fe32a7c 2992416 fe32a7c e7aff49 140ba3d e7aff49 140ba3d fe32a7c e7aff49 140ba3d e7aff49 140ba3d 17483c8 fe32a7c 44a607c fe32a7c 140ba3d fe32a7c 140ba3d 44a607c 9f00d49 44a607c fe32a7c 9f00d49 cda8f2c 17483c8 9f00d49 17483c8 60d0010 140ba3d 60d0010 9f00d49 140ba3d 44a607c 140ba3d 9f00d49 17483c8 9f00d49 140ba3d fe32a7c 140ba3d 2bdeddf 2487f72 2bdeddf 2487f72 44a607c 2487f72 44a607c 2487f72 2bdeddf fe32a7c 9f00d49 2bdeddf fe32a7c 2bdeddf fe32a7c 2bdeddf 5f09953 10165e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import os
import random
import gradio as gr
from datetime import datetime
from transformers import pipeline
from simple_salesforce import Salesforce, SalesforceLogin
from dotenv import load_dotenv
import xml.etree.ElementTree as ET
# ---------- Load Environment Variables ----------
load_dotenv()
SF_USERNAME = os.getenv("SF_USERNAME")
SF_PASSWORD = os.getenv("SF_PASSWORD")
SF_SECURITY_TOKEN = os.getenv("SF_SECURITY_TOKEN")
# ---------- Label Mapping ----------
label_to_issue_type = {
"LABEL_0": "Performance",
"LABEL_1": "Error",
"LABEL_2": "Security",
"LABEL_3": "Best Practice"
}
suggestions = {
"Performance": "Consider optimizing loops and database access. Use collections to reduce SOQL queries.",
"Error": "Add proper error handling and null checks. Use try-catch blocks effectively.",
"Security": "Avoid dynamic SOQL. Use binding variables to prevent SOQL injection.",
"Best Practice": "Refactor for readability and use bulk-safe patterns, such as processing records in batches."
}
severities = {
"Performance": "Medium",
"Error": "High",
"Security": "High",
"Best Practice": "Low"
}
# ---------- Load QnA Model (no fallback) ----------
qa_pipeline = pipeline("text2text-generation", model="google/flan-t5-large")
# ---------- Logging ----------
def log_to_console(data, log_type):
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
print(f"[{timestamp}] {log_type} Log: {data}")
# ---------- Salesforce Connection ----------
try:
session_id, instance = SalesforceLogin(
username=SF_USERNAME,
password=SF_PASSWORD,
security_token=SF_SECURITY_TOKEN
)
sf = Salesforce(instance=instance, session_id=session_id)
print("β
Connected to Salesforce successfully")
except Exception as e:
sf = None
print(f"β Failed to connect to Salesforce: {e}")
# ---------- Code Analyzer ----------
def analyze_code(code):
if not code.strip():
return "No code provided.", "", ""
label = random.choice(list(label_to_issue_type.keys()))
issue_type = label_to_issue_type[label]
suggestion = suggestions[issue_type]
severity = severities[issue_type]
review_data = {
"Name": f"Review_{issue_type}",
"CodeSnippet__c": code,
"IssueType__c": issue_type,
"Suggestion__c": suggestion,
"Severity__c": severity
}
log_to_console(review_data, "Code Review")
if sf:
try:
result = sf.CodeReviewResult__c.create(review_data)
if result.get("success"):
log_to_console({"Salesforce Record ID": result["id"]}, "Salesforce Create")
else:
log_to_console(result, "Salesforce Error")
except Exception as e:
log_to_console({"Salesforce Exception": str(e)}, "Salesforce Error")
else:
log_to_console("Salesforce not connected.", "Salesforce Error")
return issue_type, suggestion, severity
# ---------- Metadata Validator ----------
def validate_metadata(metadata, admin_id=None):
if not metadata.strip():
return "No metadata provided.", "", ""
mtype = "Field"
issue = "Unknown"
recommendation = "No recommendation found."
try:
root = ET.fromstring(metadata)
description_found = any(elem.tag.endswith('description') for elem in root)
if not description_found:
issue = "Missing description"
recommendation = "Add a meaningful <description> to improve maintainability and clarity."
else:
issue = "Unused field detected"
recommendation = "Remove it to improve performance or document its purpose."
except Exception as e:
issue = "Invalid XML"
recommendation = f"Could not parse metadata XML. Error: {str(e)}"
log_data = {
"Name": f"MetadataLog_{mtype}",
"MetadataType__c": mtype,
"IssueDescription__c": issue,
"Recommendation__c": recommendation,
"Status__c": "Open"
}
if admin_id:
log_data["Admin__c"] = admin_id
log_to_console(log_data, "Metadata Validation")
if sf:
try:
result = sf.MetadataAuditLog__c.create(log_data)
if result.get("success"):
log_to_console({"Salesforce MetadataAuditLog Record ID": result["id"]}, "Salesforce Create")
else:
log_to_console(result, "Salesforce Metadata Error")
except Exception as e:
log_to_console({"Salesforce Exception": str(e)}, "Salesforce Error")
else:
log_to_console("Salesforce not connected.", "Salesforce Error")
return mtype, issue, recommendation
# ---------- Salesforce Chatbot (Improved Prompt) ----------
conversation_history = []
def salesforce_chatbot(query, history=[]):
global conversation_history
if not query.strip():
return "Please provide a valid Salesforce-related question."
salesforce_keywords = [
"apex", "soql", "trigger", "lwc", "aura", "visualforce", "salesforce", "governor limits",
"dml", "metadata", "batch apex", "queueable", "future method", "api", "sfdc", "heap", "limits"
]
if not any(keyword.lower() in query.lower() for keyword in salesforce_keywords):
return "Please ask a Salesforce-related question."
history_summary = "\n".join([f"User: {q}\nAssistant: {a}" for q, a in conversation_history[-4:]])
prompt = f"""
You are a certified Salesforce developer and architect. Your role is to answer with 100% accurate and detailed technical explanations, especially about limits, code, and platform best practices.
Your answers MUST:
- Always be at least two lines long.
- Be correct, clear, and production-safe.
- Include official Salesforce governor limits when applicable.
- Use bullet points or code snippets when needed.
- Recommend Trailhead or official docs if the answer isn't definitive.
- Follow real-world practices (bulkification, error handling, etc).
Conversation History:
{history_summary}
User: {query.strip()}
Assistant:
"""
try:
result = qa_pipeline(prompt, max_new_tokens=1024, do_sample=False, temperature=0.1, top_k=50)
output = result[0]["generated_text"].strip()
if output.startswith("Assistant:"):
output = output.replace("Assistant:", "").strip()
if len(output.split()) < 15:
output += "\n\nRefer to: https://developer.salesforce.com/docs for more."
conversation_history.append((query, output))
conversation_history = conversation_history[-6:]
log_to_console({"Question": query, "Answer": output}, "Chatbot Query")
return output
except Exception as e:
return f"β οΈ Error generating response: {str(e)}"
# ---------- Gradio UI ----------
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# π€ Advanced Salesforce AI Code Review & Chatbot")
with gr.Tab("Code Review"):
code_input = gr.Textbox(label="Apex / LWC Code", lines=8, placeholder="Enter your Apex or LWC code here")
issue_type = gr.Textbox(label="Issue Type")
suggestion = gr.Textbox(label="AI Suggestion")
severity = gr.Textbox(label="Severity")
code_button = gr.Button("Analyze Code")
code_button.click(analyze_code, inputs=code_input, outputs=[issue_type, suggestion, severity])
with gr.Tab("Metadata Validation"):
metadata_input = gr.Textbox(label="Metadata XML", lines=8, placeholder="Enter your metadata XML here")
mtype = gr.Textbox(label="Type")
issue = gr.Textbox(label="Issue")
recommendation = gr.Textbox(label="Recommendation")
metadata_button = gr.Button("Validate Metadata")
metadata_button.click(validate_metadata, inputs=metadata_input, outputs=[mtype, issue, recommendation])
with gr.Tab("Salesforce Chatbot"):
chatbot_output = gr.Chatbot(label="Conversation History", height=400)
query_input = gr.Textbox(label="Your Question", placeholder="e.g., How many DML operations are allowed in Apex?")
with gr.Row():
chatbot_button = gr.Button("Ask")
clear_button = gr.Button("Clear Chat")
chat_state = gr.State(value=[])
def update_chatbot(query, chat_history):
if not query.strip():
return chat_history, "Please enter a valid question."
response = salesforce_chatbot(query, chat_history)
chat_history.append((query, response))
return chat_history, ""
def clear_chat():
global conversation_history
conversation_history = []
return [], ""
chatbot_button.click(fn=update_chatbot, inputs=[query_input, chat_state], outputs=[chatbot_output, query_input])
clear_button.click(fn=clear_chat, inputs=None, outputs=[chatbot_output, query_input])
if __name__ == "__main__":
demo.launch()
|