File size: 14,610 Bytes
f330df4
27a375e
 
f330df4
27a375e
f330df4
 
ff610ff
27a375e
3c9f1bc
 
27a375e
c70b653
27a375e
fd970b6
f330df4
ff610ff
27a375e
ff610ff
27a375e
f330df4
 
27a375e
ff610ff
27a375e
f330df4
ff610ff
f330df4
c70b653
 
 
 
 
 
 
 
 
 
 
ff610ff
 
 
27a375e
ff610ff
 
 
 
 
f330df4
1dff96b
27a375e
1dff96b
ff610ff
1dff96b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c70b653
 
 
 
 
 
 
 
 
 
 
 
 
 
6255a6d
f330df4
6255a6d
 
 
 
 
 
 
 
 
 
 
 
 
c70b653
6255a6d
15c9ede
 
 
 
 
 
 
 
 
 
 
 
 
6255a6d
 
 
 
 
 
 
 
27a375e
6255a6d
27a375e
fd970b6
aca59c0
 
 
fd970b6
c70b653
aca59c0
 
 
6255a6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27a375e
 
c70b653
27a375e
 
6255a6d
27a375e
ff610ff
6255a6d
27a375e
6255a6d
 
 
 
 
1dff96b
27a375e
1dff96b
27a375e
ff610ff
27a375e
1dff96b
 
 
 
 
 
 
 
 
 
 
 
 
 
6255a6d
27a375e
 
 
 
 
 
c70b653
6255a6d
 
 
1dff96b
 
6255a6d
1dff96b
27a375e
 
ff610ff
 
1dff96b
 
 
 
ff610ff
27a375e
 
aca59c0
 
 
 
27a375e
ff610ff
 
27a375e
 
ff610ff
f330df4
aca59c0
 
1dff96b
6255a6d
 
1dff96b
 
 
 
 
 
6255a6d
 
 
 
 
1dff96b
 
 
 
6255a6d
 
 
 
 
c70b653
1dff96b
 
 
 
 
aca59c0
3c9f1bc
27a375e
 
1dff96b
27a375e
f330df4
ff610ff
 
27a375e
 
1dff96b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27a375e
 
1dff96b
 
 
 
 
 
 
 
 
 
 
 
 
 
4cfc47d
1dff96b
 
4cfc47d
27a375e
4cfc47d
1dff96b
 
 
 
 
 
f330df4
3c9f1bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60fde0c
 
 
3c9f1bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f330df4
ff610ff
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import os
import re
import json
import gradio as gr
import pandas as pd
import pdfplumber
import pytesseract
from pdf2image import convert_from_path
from huggingface_hub import InferenceClient
from fpdf import FPDF  # Added for PDF generation
import tempfile  # Added for temporary file handling

# Initialize with reliable free model
hf_token = os.getenv("HF_TOKEN")
client = InferenceClient(model="mistralai/Mistral-7B-Instruct-v0.2", token=hf_token)

def extract_excel_data(file_path):
    """Extract text from Excel file"""
    df = pd.read_excel(file_path, engine='openpyxl')
    return df.to_string(index=False)

def extract_text_from_pdf(pdf_path, is_scanned=False):
    """Extract text from PDF with fallback OCR"""
    try:
        # Try native PDF extraction first
        with pdfplumber.open(pdf_path) as pdf:
            text = ""
            for page in pdf.pages:
                # Extract tables first for structured data
                tables = page.extract_tables()
                for table in tables:
                    for row in table:
                        text += " | ".join(str(cell) for cell in row) + "\n"
                    text += "\n"
                
                # Extract text for unstructured data
                page_text = page.extract_text()
                if page_text:
                    text += page_text + "\n\n"
            return text
    except Exception as e:
        print(f"Native PDF extraction failed: {str(e)}")
        # Fallback to OCR for scanned PDFs
        images = convert_from_path(pdf_path, dpi=200)
        text = ""
        for image in images:
            text += pytesseract.image_to_string(image) + "\n"
        return text

def parse_bank_statement(text, file_type):
    """Parse bank statement using LLM with fallback to rule-based parser"""
    # Clean text differently based on file type
    cleaned_text = re.sub(r'[\x00-\x08\x0b\x0c\x0e-\x1f\x7f]', '', text)
    
    if file_type == 'pdf':
        # PDF-specific cleaning
        cleaned_text = re.sub(r'Page \d+ of \d+', '', cleaned_text, flags=re.IGNORECASE)
        cleaned_text = re.sub(r'CropBox.*?MediaBox', '', cleaned_text, flags=re.IGNORECASE)
        
        # Keep only lines that look like transactions
        transaction_lines = []
        for line in cleaned_text.split('\n'):
            if re.match(r'^\d{4}-\d{2}-\d{2}', line):  # Date pattern
                transaction_lines.append(line)
            elif '|' in line and any(x in line for x in ['Date', 'Amount', 'Balance']):
                transaction_lines.append(line)
        
        cleaned_text = "\n".join(transaction_lines)
    
    print(f"Cleaned text sample: {cleaned_text[:200]}...")
    
    # Try rule-based parsing first for structured data
    rule_based_data = rule_based_parser(cleaned_text)
    if rule_based_data["transactions"]:
        print("Using rule-based parser results")
        return rule_based_data
    
    # Fallback to LLM for unstructured data
    print("Falling back to LLM parsing")
    return llm_parser(cleaned_text)

def llm_parser(text):
    """LLM parser for unstructured text"""
    # Craft precise prompt with strict JSON formatting instructions
    prompt = f"""
<|system|>
You are a financial data parser. Extract transactions from bank statements and return ONLY valid JSON.
</s>
<|user|>
Extract all transactions from this bank statement with these exact fields:
- date (format: YYYY-MM-DD)
- description
- amount (format: 0.00)
- debit (format: 0.00)
- credit (format: 0.00)
- closing_balance (format: 0.00 or -0.00 for negative)
- category
Statement text:
{text[:3000]}  [truncated if too long]
Return JSON with this exact structure:
{{
  "transactions": [
    {{
      "date": "2025-05-08",
      "description": "Company XYZ Payroll",
      "amount": "8315.40",
      "debit": "0.00",
      "credit": "8315.40",
      "closing_balance": "38315.40",
      "category": "Salary"
    }}
  ]
}}
RULES:
1. Output ONLY the JSON object with no additional text
2. Keep amounts as strings with 2 decimal places
3. For missing values, use empty strings
4. Convert negative amounts to format "-123.45"
5. Map categories to: Salary, Groceries, Medical, Utilities, Entertainment, Dining, Misc
</s>
<|assistant|>
"""
    
    try:
        # Call LLM via Hugging Face Inference API
        response = client.text_generation(
            prompt,
            max_new_tokens=2000,
            temperature=0.01,
            stop=["</s>"]  # Updated to 'stop' parameter
        )
        print(f"LLM Response: {response}")
        
        # Validate and clean JSON response
        response = response.strip()
        if not response.startswith('{'):
            # Find the first { and last } to extract JSON
            start_idx = response.find('{')
            end_idx = response.rfind('}')
            if start_idx != -1 and end_idx != -1:
                response = response[start_idx:end_idx+1]
        
        # Parse JSON and validate structure
        data = json.loads(response)
        if "transactions" not in data:
            raise ValueError("Missing 'transactions' key in JSON")
            
        return data
    except Exception as e:
        print(f"LLM Error: {str(e)}")
        return {"transactions": []}

def rule_based_parser(text):
    """Enhanced fallback parser for structured tables"""
    lines = [line.strip() for line in text.split('\n') if line.strip()]
    
    # Find header line - more flexible detection
    header_index = None
    header_patterns = [
        r'Date\b', r'Description\b', r'Amount\b', 
        r'Debit\b', r'Credit\b', r'Closing\s*Balance\b', r'Category\b'
    ]
    
    # First try: Look for a full header line
    for i, line in enumerate(lines):
        if all(re.search(pattern, line, re.IGNORECASE) for pattern in header_patterns[:3]):
            header_index = i
            break
    
    # Second try: Look for any header indicators
    if header_index is None:
        for i, line in enumerate(lines):
            if any(re.search(pattern, line, re.IGNORECASE) for pattern in header_patterns):
                header_index = i
                break
    
    # Third try: Look for pipe-delimited headers
    if header_index is None:
        for i, line in enumerate(lines):
            if '|' in line and any(p in line for p in ['Date', 'Amount', 'Balance']):
                header_index = i
                break
    
    if header_index is None:
        return {"transactions": []}
    
    data_lines = lines[header_index + 1:]
    transactions = []
    
    for line in data_lines:
        # Handle both pipe-delimited and space-delimited formats
        if '|' in line:
            parts = [p.strip() for p in line.split('|') if p.strip()]
        else:
            # Space-delimited format - split by 2+ spaces
            parts = re.split(r'\s{2,}', line)
        
        # Skip lines that don't have enough parts
        if len(parts) < 7:
            continue
            
        try:
            # Handle transaction date validation
            if not re.match(r'\d{4}-\d{2}-\d{2}', parts[0]):
                continue
                
            transactions.append({
                "date": parts[0],
                "description": parts[1],
                "amount": format_number(parts[2]),
                "debit": format_number(parts[3]),
                "credit": format_number(parts[4]),
                "closing_balance": format_number(parts[5]),
                "category": parts[6]
            })
        except Exception as e:
            print(f"Error parsing line: {str(e)}")
    
    return {"transactions": transactions}

def format_number(value):
    """Format numeric values consistently"""
    if not value or str(value).lower() in ['nan', 'nat']:
        return "0.00"
        
    # If it's already a number, format directly
    if isinstance(value, (int, float)):
        return f"{value:.2f}"
        
    # Clean string values
    value = str(value).replace(',', '').replace('$', '').strip()
    
    # Handle negative numbers in parentheses
    if '(' in value and ')' in value:
        value = '-' + value.replace('(', '').replace(')', '')
    
    # Handle empty values
    if not value:
        return "0.00"
    
    # Standardize decimal format
    if '.' not in value:
        value += '.00'
    
    # Ensure two decimal places
    try:
        num_value = float(value)
        return f"{num_value:.2f}"
    except ValueError:
        # If we can't convert to float, return original but clean it
        return value.split('.')[0] + '.' + value.split('.')[1][:2].ljust(2, '0')

def process_file(file, is_scanned=False):
    """Main processing function"""
    if not file:
        return empty_df()
    
    file_path = file.name
    file_ext = os.path.splitext(file_path)[1].lower()
    
    try:
        if file_ext == '.xlsx':
            # Directly process Excel files without text conversion
            df = pd.read_excel(file_path, engine='openpyxl')
            
            # Normalize column names
            df.columns = df.columns.str.strip().str.lower()
            
            # Create mapping to expected columns
            col_mapping = {
                'date': 'date',
                'description': 'description',
                'amount': 'amount',
                'debit': 'debit',
                'credit': 'credit',
                'closing balance': 'closing_balance',
                'closing': 'closing_balance',
                'balance': 'closing_balance',
                'category': 'category'
            }
            
            # Create output DataFrame with required columns
            output_df = pd.DataFrame()
            for col in ['date', 'description', 'amount', 'debit', 'credit', 'closing_balance', 'category']:
                if col in df.columns:
                    output_df[col] = df[col]
                elif any(alias in col_mapping and col_mapping[alias] == col for alias in df.columns):
                    # Find alias
                    for alias in df.columns:
                        if alias in col_mapping and col_mapping[alias] == col:
                            output_df[col] = df[alias]
                            break
                else:
                    output_df[col] = ""
            
            # Format numeric columns
            for col in ['amount', 'debit', 'credit', 'closing_balance']:
                output_df[col] = output_df[col].apply(format_number)
            
            # Rename columns for display
            output_df.columns = ["Date", "Description", "Amount", "Debit", 
                               "Credit", "Closing Balance", "Category"]
            return output_df

        elif file_ext == '.pdf':
            text = extract_text_from_pdf(file_path, is_scanned=is_scanned)
            parsed_data = parse_bank_statement(text, 'pdf')
            df = pd.DataFrame(parsed_data["transactions"])
            
            # Ensure all required columns exist
            required_cols = ["date", "description", "amount", "debit", 
                            "credit", "closing_balance", "category"]
            for col in required_cols:
                if col not in df.columns:
                    df[col] = ""
            
            # Format columns properly
            df.columns = ["Date", "Description", "Amount", "Debit", 
                         "Credit", "Closing Balance", "Category"]
            return df
        
        else:
            return empty_df()
    
    except Exception as e:
        print(f"Processing error: {str(e)}")
        return empty_df()

def empty_df():
    """Return empty DataFrame with correct columns"""
    return pd.DataFrame(columns=["Date", "Description", "Amount", "Debit", 
                               "Credit", "Closing Balance", "Category"])

# New function to generate PDF from DataFrame
def generate_pdf(df):
    """Generate PDF from DataFrame and return file path"""
    if df.empty:
        return None
        
    # Create a PDF
    pdf = FPDF()
    pdf.add_page()
    pdf.set_font("Arial", size=8)  # Smaller font to fit more data
    
    # Set column widths
    col_widths = [22, 65, 20, 15, 15, 25, 20]  # Adjusted to fit all columns
    
    # Headers
    headers = df.columns.tolist()
    for i, header in enumerate(headers):
        pdf.cell(col_widths[i], 10, header, border=1)
    pdf.ln()
    
    # Data
    for _, row in df.iterrows():
        for i, col in enumerate(headers):
            # Truncate long descriptions
            value = str(row[col])
            if headers[i] == "Description" and len(value) > 30:
                value = value[:27] + "..."
            pdf.cell(col_widths[i], 10, value, border=1)
        pdf.ln()
    
    # Save to temporary file
    temp_file = tempfile.NamedTemporaryFile(suffix=".pdf", delete=False)
    temp_file.close()
    pdf.output(temp_file.name)
    return temp_file.name

# Modified Gradio Interface
with gr.Blocks() as interface:  # Changed to Blocks for more control
    gr.Markdown("## AI Bank Statement Parser")
    gr.Markdown("Extract structured transaction data from PDF/Excel bank statements")
    
    # File input
    file_input = gr.File(label="Upload Bank Statement (PDF/Excel)")
    
    # Output dataframe
    output_df = gr.Dataframe(
        label="Parsed Transactions",
        headers=["Date", "Description", "Amount", "Debit", "Credit", "Closing Balance", "Category"],
        datatype=["date", "str", "number", "number", "number", "number", "str"]
    )
    
    # State to store the processed DataFrame
    state_df = gr.State(value=pd.DataFrame())
    
    # Download button (initially hidden)
    download_btn = gr.DownloadButton(
        "Download as PDF",
        visible=False,
        elem_classes="download-btn"
    )
    
    # Process file and update state
    def process_and_store(file):
        df = process_file(file)
        return df, df, gr.DownloadButton(visible=not df.empty)
    
    # Connect components
    file_input.change(
        process_and_store,
        inputs=[file_input],
        outputs=[output_df, state_df, download_btn]
    )
    
    # Generate PDF when download button is clicked
    def on_download_click(df):
        return generate_pdf(df)
    
    download_btn.click(
        on_download_click,
        inputs=[state_df],
        outputs=[download_btn]
    )

# Add custom CSS for the download button position
interface.css = """
.download-btn {
    margin-top: 20px !important;
    margin-bottom: 30px !important;
}
"""

if __name__ == "__main__":
    interface.launch()