Spaces:
Sleeping
Sleeping
# import os | |
# import gradio as gr | |
# from langchain.chat_models import ChatOpenAI | |
# from langchain.prompts import PromptTemplate | |
# from langchain.chains import LLMChain | |
# from langchain.memory import ConversationBufferMemory | |
# # Set OpenAI API Key | |
# OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') | |
# # Define the template for the chatbot's response | |
# template = """You are a helpful assistant to answer all user queries. | |
# {chat_history} | |
# User: {user_message} | |
# Chatbot:""" | |
# # Define the prompt template | |
# prompt = PromptTemplate( | |
# input_variables=["chat_history", "user_message"], | |
# template=template | |
# ) | |
# # Initialize conversation memory | |
# memory = ConversationBufferMemory(memory_key="chat_history") | |
# # Define the LLM chain with the ChatOpenAI model and conversation memory | |
# llm_chain = LLMChain( | |
# llm=ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo"), # Use 'model' instead of 'model_name' | |
# prompt=prompt, | |
# verbose=True, | |
# memory=memory, | |
# ) | |
# # Function to get chatbot response | |
# def get_text_response(user_message, history): | |
# response = llm_chain.predict(user_message=user_message) | |
# return response | |
# # Create a Gradio chat interface | |
# demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text") | |
# if __name__ == "__main__": | |
# demo.launch() | |
# import os | |
# import gradio as gr | |
# from langchain.chat_models import ChatOpenAI | |
# from langchain.schema import AIMessage, HumanMessage | |
# # Set OpenAI API Key | |
# os.environ["OPENAI_API_KEY"] = "sk-3_mJiR5z9Q3XN-D33cgrAIYGffmMvHfu5Je1U0CW1ZT3BlbkFJA2vfSvDqZAVUyHo2JIcU91XPiAq424OSS8ci29tWMA" # Replace with your key | |
# # Initialize the ChatOpenAI model | |
# llm = ChatOpenAI(temperature=1.0, model="gpt-3.5-turbo-0613") | |
# # Function to predict response | |
# def get_text_response(message, history=None): | |
# # Ensure history is a list | |
# if history is None: | |
# history = [] | |
# # Convert the Gradio history format to LangChain message format | |
# history_langchain_format = [] | |
# for human, ai in history: | |
# history_langchain_format.append(HumanMessage(content=human)) | |
# history_langchain_format.append(AIMessage(content=ai)) | |
# # Add the new user message to the history | |
# history_langchain_format.append(HumanMessage(content=message)) | |
# # Get the model's response | |
# gpt_response = llm(history_langchain_format) | |
# # Append AI response to history | |
# history.append((message, gpt_response.content)) | |
# # Return the response and updated history | |
# return gpt_response.content, history | |
# # Create a Gradio chat interface | |
# demo = gr.ChatInterface( | |
# fn=get_text_response, | |
# inputs=["text", "state"], | |
# outputs=["text", "state"] | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch() | |
# import os # Import the os module | |
# import time | |
# import gradio as gr | |
# from langchain_community.chat_models import ChatOpenAI # Updated import based on deprecation warning | |
# from langchain.schema import AIMessage, HumanMessage | |
# import openai | |
# # Set your OpenAI API key | |
# os.environ["OPENAI_API_KEY"] = "sk-3_mJiR5z9Q3XN-D33cgrAIYGffmMvHfu5Je1U0CW1ZT3BlbkFJA2vfSvDqZAVUyHo2JIcU91XPiAq424OSS8ci29tWMA" # Replace with your OpenAI key | |
# # Initialize ChatOpenAI | |
# llm = ChatOpenAI(temperature=1.0, model='gpt-3.5-turbo-0613') | |
# def predict(message, history): | |
# # Reformat history for LangChain | |
# history_langchain_format = [] | |
# for human, ai in history: | |
# history_langchain_format.append(HumanMessage(content=human)) | |
# history_langchain_format.append(AIMessage(content=ai)) | |
# # Add latest human message | |
# history_langchain_format.append(HumanMessage(content=message)) | |
# # Get response from the model | |
# gpt_response = llm(history_langchain_format) | |
# # Return response | |
# return gpt_response.content | |
# # Using ChatInterface to create a chat-style UI | |
# demo = gr.ChatInterface(fn=predict, type="messages") | |
# if __name__ == "__main__": | |
# demo.launch() | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |