File size: 17,844 Bytes
3aabe25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5177a4e
 
 
3e065db
 
5177a4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aabe25
 
 
938a41c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
789f6c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9d8fd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eedc15d
e9d8fd0
 
 
 
 
 
 
 
 
 
 
 
 
06dd8c4
e9d8fd0
 
789f6c7
e9d8fd0
 
789f6c7
e6601b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73354c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6601b8
 
3f011e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cb611e
 
7f0753e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d0a3f0
 
e6601b8
e9d8fd0
e6601b8
 
 
73354c3
e6601b8
3f011e2
e6601b8
73354c3
e6601b8
7f0753e
e6601b8
789f6c7
eedc15d
3f011e2
73354c3
 
 
 
 
 
 
7f0753e
e9d8fd0
7d0a3f0
 
 
 
 
e6601b8
7d0a3f0
e6601b8
7d0a3f0
7f0753e
7d0a3f0
 
3f011e2
 
7d0a3f0
e6601b8
7d0a3f0
 
3f011e2
eedc15d
3f011e2
 
7d0a3f0
 
3f011e2
 
eedc15d
3aabe25
5177a4e
3605342
 
bb24da0
938a41c
789f6c7
e9d8fd0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
# import gradio as gr
# from huggingface_hub import InferenceClient

# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("Qwen/Qwen2.5-Coder-32B-Instruct")


# def respond(
#     message,
#     history: list[tuple[str, str]],
#     system_message,
#     max_tokens,
#     temperature,
#     top_p,
# ):
#     messages = [{"role": "system", "content": system_message}]

#     for val in history:
#         if val[0]:
#             messages.append({"role": "user", "content": val[0]})
#         if val[1]:
#             messages.append({"role": "assistant", "content": val[1]})

#     messages.append({"role": "user", "content": message})

#     response = ""

#     for message in client.chat_completion(
#         messages,
#         max_tokens=max_tokens,
#         stream=True,
#         temperature=temperature,
#         top_p=top_p,
#     ):
#         token = message.choices[0].delta.content

#         response += token
#         yield response


# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
#     respond,
#     additional_inputs=[
#         gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
#         gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max new tokens"),
#         gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
#         gr.Slider(
#             minimum=0.1,
#             maximum=1.0,
#             value=0.95,
#             step=0.05,
#             label="Top-p (nucleus sampling)",
#         ),
#     ],
# )


# if __name__ == "__main__":
#     demo.launch()

# import gradio as gr
# from huggingface_hub import InferenceClient

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient("Qwen/Qwen2.5-Coder-32B-Instruct")

# def respond(message, history: list[tuple[str, str]]):
#     system_message = (
#     "You are a helpful and experienced coding assistant specialized in web development. "
#     "Help the user by generating complete and functional code for building websites. "
#     "You can provide HTML, CSS, JavaScript, and backend code (like Flask, Node.js, etc.) based on their requirements. "
#     "Break down the tasks clearly if needed, and be friendly and supportive in your responses.")
#     max_tokens = 2048
#     temperature = 0.7
#     top_p = 0.95

#     messages = [{"role": "system", "content": system_message}]

#     for val in history:
#         if val[0]:
#             messages.append({"role": "user", "content": val[0]})
#         if val[1]:
#             messages.append({"role": "assistant", "content": val[1]})

#     messages.append({"role": "user", "content": message})

#     response = ""

#     for message in client.chat_completion(
#         messages,
#         max_tokens=max_tokens,
#         stream=True,
#         temperature=temperature,
#         top_p=top_p,
#     ):
#         token = message.choices[0].delta.content

#         response += token
#         yield response

# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(respond)

# if __name__ == "__main__":
#     demo.launch()

# import gradio as gr
# from huggingface_hub import InferenceClient

# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("Qwen/Qwen2.5-Coder-32B-Instruct")

# def respond(message, history: list[tuple[str, str]]):
#     system_message = (
#         "You are a helpful and experienced coding assistant specialized in web development. "
#         "Help the user by generating complete and functional code for building websites. "
#         "You can provide HTML, CSS, JavaScript, and backend code (like Flask, Node.js, etc.) based on their requirements. "
#         "Break down the tasks clearly if needed, and be friendly and supportive in your responses."
#     )
#     max_tokens = 2048
#     temperature = 0.7
#     top_p = 0.95

#     messages = [{"role": "system", "content": system_message}]

#     for val in history:
#         if val[0]:
#             messages.append({"role": "user", "content": val[0]})
#         if val[1]:
#             messages.append({"role": "assistant", "content": val[1]})

#     messages.append({"role": "user", "content": message})

#     response = ""

#     for message in client.chat_completion(
#         messages,
#         max_tokens=max_tokens,
#         stream=True,
#         temperature=temperature,
#         top_p=top_p,
#     ):
#         token = message.choices[0].delta.content

#         response += token
#         yield response

# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(respond)

# if __name__ == "__main__":
#     demo.launch()

# import gradio as gr
# from huggingface_hub import InferenceClient

# # 1. Instantiate with named model param
# client = InferenceClient(model="Qwen/Qwen2.5-Coder-32B-Instruct")

# def respond(message, history: list[tuple[str, str]]):
#     system_message = (
#         "You are a helpful and experienced coding assistant specialized in web development. "
#         "Help the user by generating complete and functional code for building websites. "
#         "You can provide HTML, CSS, JavaScript, and backend code (like Flask, Node.js, etc.) "
#         "based on their requirements."
#     )
#     max_tokens = 2048
#     temperature = 0.7
#     top_p = 0.95

#     # Build messages in OpenAI-compatible format
#     messages = [{"role": "system", "content": system_message}]
#     for user_msg, assistant_msg in history:
#         if user_msg:
#             messages.append({"role": "user", "content": user_msg})
#         if assistant_msg:
#             messages.append({"role": "assistant", "content": assistant_msg})
#     messages.append({"role": "user", "content": message})

#     response = ""
#     # 2. Use named parameters and alias if desired
#     for chunk in client.chat.completions.create(
#         model="Qwen/Qwen2.5-Coder-32B-Instruct",
#         messages=messages,
#         max_tokens=max_tokens,
#         stream=True,
#         temperature=temperature,
#         top_p=top_p,
#     ):
#         # 3. Extract token content
#         token = chunk.choices[0].delta.content or ""
#         response += token
#         yield response

# # 4. Wire up Gradio chat interface
# demo = gr.ChatInterface(respond, type="messages")

# if __name__ == "__main__":
#     demo.launch()
# import gradio as gr
# from huggingface_hub import InferenceClient

# hf_token = "HF_TOKEN"


# # Ensure token is available
# if hf_token is None:
#     raise ValueError("HUGGINGFACEHUB_API_TOKEN is not set in .env file or environment.")

# # Instantiate Hugging Face Inference Client with token
# client = InferenceClient(
#     model="Qwen/Qwen2.5-Coder-32B-Instruct",
#     token=hf_token
# )

# def respond(message, history: list[tuple[str, str]]):
#     system_message = (
#         "You are a helpful and experienced coding assistant specialized in web development. "
#         "Help the user by generating complete and functional code for building websites. "
#         "You can provide HTML, CSS, JavaScript, and backend code (like Flask, Node.js, etc.) "
#         "based on their requirements."
#     )
#     max_tokens = 2048
#     temperature = 0.7
#     top_p = 0.95

#     # Build conversation history
#     messages = [{"role": "system", "content": system_message}]
#     for user_msg, assistant_msg in history:
#         if user_msg:
#             messages.append({"role": "user", "content": user_msg})
#         if assistant_msg:
#             messages.append({"role": "assistant", "content": assistant_msg})
#     messages.append({"role": "user", "content": message})

#     response = ""
#     # Stream the response from the model
#     for chunk in client.chat.completions.create(
#         model="Qwen/Qwen2.5-Coder-32B-Instruct",
#         messages=messages,
#         max_tokens=max_tokens,
#         stream=True,
#         temperature=temperature,
#         top_p=top_p,
#     ):
#         token = chunk.choices[0].delta.content or ""
#         response += token
#         yield response

# # Gradio UI
# demo = gr.ChatInterface(respond, type="messages")

# if __name__ == "__main__":
#     demo.launch()

# import gradio as gr
# from transformers import AutoTokenizer, AutoModelForCausalLM
# import torch

# # Load once globally
# tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Coder-32B-Instruct")
# model = AutoModelForCausalLM.from_pretrained(
#     "Qwen/Qwen2.5-Coder-32B-Instruct",
#     device_map="auto",
#     torch_dtype=torch.float16,
# )

# def respond(message, history):
#     system_prompt = (
#         "You are a helpful coding assistant specialized in web development. "
#         "Provide complete code snippets for HTML, CSS, JS, Flask, Node.js etc."
#     )
#     # Build input prompt including chat history
#     chat_history = ""
#     for user_msg, bot_msg in history:
#         chat_history += f"User: {user_msg}\nAssistant: {bot_msg}\n"
#     prompt = f"{system_prompt}\n{chat_history}User: {message}\nAssistant:"

#     inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
#     outputs = model.generate(
#         **inputs,
#         max_new_tokens=512,
#         temperature=0.7,
#         do_sample=True,
#         top_p=0.95,
#         eos_token_id=tokenizer.eos_token_id,
#     )
#     generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)

#     # Extract only the new response part after the prompt
#     response = generated_text[len(prompt):].strip()

#     # Append current Q/A to history
#     history.append((message, response))
#     return "", history

# demo = gr.ChatInterface(respond, type="messages")

# if __name__ == "__main__":
#     demo.launch()
# import os
# import gradio as gr
# from huggingface_hub import InferenceClient
# from dotenv import load_dotenv

# # Load .env variables (make sure to have HF_TOKEN in .env or set as env var)
# load_dotenv()
# HF_TOKEN = os.getenv("HF_TOKEN")  # or directly assign your token here as string

# # Initialize InferenceClient with Hugging Face API token
# client = InferenceClient(
#     model="deepseek-ai/DeepSeek-R1-0528-Qwen3-8B",
#     token=HF_TOKEN
# )

# def respond(message, history):
#     """
#     Chat response generator function streaming from Hugging Face Inference API.
#     """
#     system_message = (
#         "You are a helpful and experienced coding assistant specialized in web development. "
#         "Help the user by generating complete and functional code for building websites. "
#         "You can provide HTML, CSS, JavaScript, and backend code (like Flask, Node.js, etc.) "
#         "based on their requirements."
#     )
#     max_tokens = 2048
#     temperature = 0.7
#     top_p = 0.95

#     # Prepare messages in OpenAI chat format
#     messages = [{"role": "system", "content": system_message}]
#     for user_msg, assistant_msg in history:
#         if user_msg:
#             messages.append({"role": "user", "content": user_msg})
#         if assistant_msg:
#             messages.append({"role": "assistant", "content": assistant_msg})
#     messages.append({"role": "user", "content": message})

#     response = ""
#     # Stream response tokens from Hugging Face Inference API
#     for chunk in client.chat.completions.create(
#         model="deepseek-ai/DeepSeek-R1-0528-Qwen3-8B",
#         messages=messages,
#         max_tokens=max_tokens,
#         stream=True,
#         temperature=temperature,
#         top_p=top_p,
#     ):
#         token = chunk.choices[0].delta.get("content", "")
#         response += token
#         yield response

# # Create Gradio chat interface
# demo = gr.ChatInterface(fn=respond, title="Website Building Assistant")

# if __name__ == "__main__":
#     demo.launch()
# import os
# import gradio as gr
# from huggingface_hub import InferenceClient
# from dotenv import load_dotenv

# # Load environment variables
# load_dotenv()
# HF_TOKEN = os.getenv("HF_TOKEN")  # Ensure this is set in .env

# # Initialize Hugging Face Inference Client
# client = InferenceClient(
#     model="deepseek-ai/DeepSeek-R1-0528-Qwen3-8B",
#     token=HF_TOKEN
# )

# # Define system instructions for the chatbot
# system_message = (
#     "You are a helpful and experienced coding assistant specialized in web development. "
#     "Help the user by generating complete and functional code for building websites. "
#     "You can provide HTML, CSS, JavaScript, and backend code (like Flask, Node.js, etc.) "
#     "based on their requirements."
# )

# # Define the response generation function
# def respond(message, history):
#     max_tokens = 2048
#     temperature = 0.7
#     top_p = 0.95

#     # Convert chat history into OpenAI-style format
#     messages = [{"role": "system", "content": system_message}]
#     for item in history:
#         role = item["role"]
#         content = item["content"]
#         messages.append({"role": role, "content": content})
    
#     # Add the latest user message
#     messages.append({"role": "user", "content": message})

#     response = ""

#     # Streaming response from the Hugging Face Inference API
#     for chunk in client.chat.completions.create(
#         model="deepseek-ai/DeepSeek-R1-0528-Qwen3-8B",
#         messages=messages,
#         max_tokens=max_tokens,
#         stream=True,
#         temperature=temperature,
#         top_p=top_p,
#     ):
#         token = chunk.choices[0].delta.get("content")
#         if token is not None:
#             response += token
#             yield response

# # Create Gradio Chat Interface
# demo = gr.ChatInterface(
#     fn=respond,
#     title="Website Building Assistant",
#     chatbot=gr.Chatbot(show_label=False),
#     type="openai",  # Use OpenAI-style message format
# )

# if __name__ == "__main__":
#     demo.launch()# app.py

# app.py

# app.py

# import os
# import gradio as gr
# from huggingface_hub import InferenceClient
# from dotenv import load_dotenv

# # Load environment variables
# load_dotenv()
# HF_TOKEN = os.getenv("HF_TOKEN")

# # Initialize Hugging Face Inference Client
# client = InferenceClient(
#     model="mistralai/Codestral-22B-v0.1",
#     token=HF_TOKEN
# )

# # System prompt for coding assistant
# system_message = (
#     "You are a helpful and experienced coding assistant specialized in web development. "
#     "Help the user by generating complete and functional code for building websites. "
#     "You can provide HTML, CSS, JavaScript, and backend code (like Flask, Node.js, etc.) "
#     "based on their requirements."
# )

# # Streaming chatbot logic using chat.completions
# def respond(message, history):
#     # Prepare messages with system prompt
#     messages = [{"role": "system", "content": system_message}]
#     for msg in history:
#         messages.append(msg)
#     messages.append({"role": "user", "content": message})

#     # Stream response from the model
#     response = ""
#     for chunk in client.chat.completions.create(
#         model="mistralai/Codestral-22B-v0.1",
#         messages=messages,
#         max_tokens=1024,
#         temperature=0.7,
#         top_p=0.95,
#         stream=True,
#     ):
#         token = chunk.choices[0].delta.get("content", "") or ""
#         response += token
#         yield response

# # Create Gradio interface
# with gr.Blocks() as demo:
#     chatbot = gr.Chatbot(type='messages')  # Use modern message format
#     gr.ChatInterface(fn=respond, chatbot=chatbot, type="messages")  # Match format

# # Launch app
# if __name__ == "__main__":
#     demo.launch()


# app.py

import os
import gradio as gr
from huggingface_hub import InferenceClient
from dotenv import load_dotenv

# Load environment variables
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")

# Initialize Hugging Face Inference Client
client = InferenceClient(
    model="mistralai/Mistral-7B-Instruct-v0.3",
    token=HF_TOKEN
)

# System prompt for coding assistant
system_message = (
    "You are a helpful and experienced coding assistant specialized in web development. "
    "Help the user by generating complete and functional code for building websites. "
    "You can provide HTML, CSS, JavaScript, and backend code (like Flask, Node.js, etc.) "
    "based on their requirements."
)

# Streaming chatbot logic
def respond(message, history):
    # Prepare messages with system prompt
    messages = [{"role": "system", "content": system_message}]
    for msg in history:
        messages.append(msg)
    messages.append({"role": "user", "content": message})

    # Stream response from the model
    response = ""
    for chunk in client.chat.completions.create(
        model="mistralai/Mistral-7B-Instruct-v0.3",
        messages=messages,
        max_tokens=1024,
        temperature=0.7,
        top_p=0.95,
        stream=True,
    ):
        token = chunk.choices[0].delta.get("content", "") or ""
        response += token
        yield response

# Create Gradio interface
with gr.Blocks() as demo:
    chatbot = gr.Chatbot(type='messages')  # Use modern message format
    gr.ChatInterface(fn=respond, chatbot=chatbot, type="messages")  # Match format

# Launch app
if __name__ == "__main__":
    demo.launch()