from serp_tool import search_google from llm_tool import analyze_data def run_analysis(input_type, query): """ Core agent logic to handle different analysis types """ if input_type == "Competitor Analysis": raw_data = search_google(f"site:{query} reviews pricing features") prompt = f"""Analyze competitor {query} using these reviews and features: {raw_data} Generate a detailed SWOT analysis: 1. Strengths 2. Weaknesses 3. Opportunities 4. Threats Include pricing strategy insights and customer sentiment summary.""" elif input_type == "Keyword Research": raw_data = search_google(f"best keywords for {query}") prompt = f"""Generate SEO keyword report for "{query}" using: {raw_data} List: 1. Top 5 keywords (with search volume and CPC) 2. Content gap opportunities 3. Backlink strategies 4. Competitor keyword analysis""" elif input_type == "Trend Discovery": raw_data = search_google(f"latest trends in {query} 2024") prompt = f"""Identify emerging trends in "{query}" using: {raw_data} Report: 1. Top 3 trends 2. Viral content patterns 3. Customer pain points 4. Opportunity areas""" elif input_type == "Idea Validation": raw_data = search_google(f"market demand for {query}") prompt = f"""Validate business idea "{query}" using market data: {raw_data} Assess: 1. Market demand score (1-10) 2. Competitor saturation 3. Pricing benchmarks 4. Go-to-market strategy""" else: return "Invalid analysis type selected" return analyze_data(prompt)