File size: 9,142 Bytes
8347b4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df848a8
 
 
2fbbdcf
df848a8
 
f9a420a
df848a8
 
2fbbdcf
df848a8
 
f9a420a
df848a8
 
 
 
 
 
 
 
 
 
2f8b5bf
df848a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f62a0c5
df848a8
f62a0c5
df848a8
f62a0c5
df848a8
 
 
2f8b5bf
 
f62a0c5
 
df848a8
 
8347b4f
 
f62a0c5
df848a8
f62a0c5
 
 
 
df848a8
 
f62a0c5
df848a8
 
 
 
 
2f8b5bf
 
df848a8
 
f62a0c5
df848a8
 
 
f62a0c5
 
 
 
8347b4f
f62a0c5
8347b4f
df848a8
 
2fbbdcf
2f8b5bf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# import gradio as gr
# from huggingface_hub import InferenceClient

# # Initialize the client with your desired model
# client = InferenceClient("Bhaskar2611/Capstone")

# # Define the system prompt as an AI Dermatologist
# def format_prompt(message, history):
#     prompt = "<s>"
#     # Start the conversation with a system message
#     prompt += "[INST] You are an AI Dermatologist chatbot designed to assist users with skin by only providing text and if user information is not provided related to skin then ask what they want to know related to skin.[/INST]"
#     for user_prompt, bot_response in history:
#         prompt += f"[INST] {user_prompt} [/INST]"
#         prompt += f" {bot_response}</s> "
#     prompt += f"[INST] {message} [/INST]"
#     return prompt

# # Function to generate responses with the AI Dermatologist context
# def generate(
#     prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0
# ):
#     temperature = float(temperature)
#     if temperature < 1e-2:
#         temperature = 1e-2
#     top_p = float(top_p)

#     generate_kwargs = dict(
#         temperature=temperature,
#         max_new_tokens=max_new_tokens,
#         top_p=top_p,
#         repetition_penalty=repetition_penalty,
#         do_sample=True,
#         seed=42,
#     )

#     formatted_prompt = format_prompt(prompt, history)

#     stream = client.text_generation(
#         formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False
#     )
#     output = ""

#     for response in stream:
#         output += response.token.text
#         yield output
#     return output

# # Customizable input controls for the chatbot interface
# Settings = [
#     gr.Slider(
#         label="Temperature",
#         value=0.9,
#         minimum=0.0,
#         maximum=1.0,
#         step=0.05,
#         interactive=True,
#         info="Higher values produce more diverse outputs",
#     ),
#     gr.Slider(
#         label="Max new tokens",
#         value=256,
#         minimum=0,
#         maximum=1048,
#         step=64,
#         interactive=True,
#         info="The maximum numbers of new tokens",
#     ),
#     gr.Slider(
#         label="Top-p (nucleus sampling)",
#         value=0.90,
#         minimum=0.0,
#         maximum=1,
#         step=0.05,
#         interactive=True,
#         info="Higher values sample more low-probability tokens",
#     ),
#     gr.Slider(
#         label="Repetition penalty",
#         value=1.2,
#         minimum=1.0,
#         maximum=2.0,
#         step=0.05,
#         interactive=True,
#         info="Penalize repeated tokens",
#     )
# ]
# # Define the chatbot interface with the starting system message as AI Dermatologist
# gr.ChatInterface(
#     fn=generate,
#     chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, layout="panel"),
#     additional_inputs = Settings,
#     title="Skin Bot"
# ).launch(show_api=False)

# # Load your model after launching the interface
# # gr.load("models/Bhaskar2611/Capstone").launch()

# import gradio as gr
# from huggingface_hub import InferenceClient

# # Initialize the client with your Hugging Face token
# client = InferenceClient(
#     model="HuggingFaceH4/zephyr-7b-beta",
#     hf_token = os.getenv("HF_TOKEN")
# )

# # Define the system prompt as an AI Dermatologist
# def format_prompt(message, history):
#     prompt = "<s>"
#     prompt += "[INST] You are an AI Dermatologist chatbot designed to assist users with skin by only providing text and if user information is not provided related to skin then ask what they want to know related to skin.[/INST]"
#     for user_prompt, bot_response in history:
#         prompt += f"[INST] {user_prompt} [/INST] {bot_response}</s> "
#     prompt += f"[INST] {message} [/INST]"
#     return prompt

# # Function to generate responses
# def generate(prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
#     temperature = float(temperature)
#     if temperature < 1e-2:
#         temperature = 1e-2
#     top_p = float(top_p)

#     generate_kwargs = dict(
#         temperature=temperature,
#         max_new_tokens=max_new_tokens,
#         top_p=top_p,
#         repetition_penalty=repetition_penalty,
#         do_sample=True,
#         seed=42,
#     )

#     formatted_prompt = format_prompt(prompt, history)

#     stream = client.text_generation(
#         formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False
#     )

#     output = ""
#     for response in stream:
#         output += response.token.text
#         yield output
#     return output

# # Sliders for customization
# Settings = [
#     gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
#     gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=1048, step=64, interactive=True, info="The maximum number of new tokens"),
#     gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
#     gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
# ]

# # Chat interface
# gr.ChatInterface(
#     fn=generate,
#     chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, layout="panel"),
#     additional_inputs=Settings,
#     title="Skin Bot"
# ).launch(show_api=False)

# # Load any additional models if needed
# # gr.load("models/Bhaskar2611/Capstone").launch()

# import os
# from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
# import gradio as gr

# # Load your Hugging Face token (if needed for private models or API limit increases)
# hf_token = os.environ.get("HF_TOKEN")

# # Model ID for Mistral 7B Instruct
# model_id = "mistralai/Mistral-7B-Instruct-v0.1"

# # Load tokenizer
# tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token)

# # BitsAndBytesConfig for 4-bit quantization to reduce memory usage
# bnb_config = BitsAndBytesConfig(load_in_4bit=True)

# # Load model with quantization and device mapping
# model = AutoModelForCausalLM.from_pretrained(
#     model_id,
#     quantization_config=bnb_config,
#     device_map="auto",
#     token=hf_token
# )

# # Skin assistant system prompt
# SKIN_ASSISTANT_PROMPT = (
#     "You are a helpful assistant specialized in skin diseases and dermatology. "
#     "Provide accurate, concise, and helpful advice about skin conditions, symptoms, "
#     "treatments, and care. Always respond in a clear and empathetic way.\n\n"
# )

# def generate_response(user_input):
#     prompt = SKIN_ASSISTANT_PROMPT + user_input
#     inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
#     outputs = model.generate(
#         **inputs,
#         max_new_tokens=1024,
#         do_sample=True,
#         temperature=0.7,
#         top_p=0.95,
#         repetition_penalty=1.1
#     )
#     response = tokenizer.decode(outputs[0], skip_special_tokens=True)
#     return response.replace(SKIN_ASSISTANT_PROMPT, "").strip()

# # Gradio interface
# iface = gr.Interface(
#     fn=generate_response,
#     inputs=gr.Textbox(lines=3, placeholder="Ask about skin diseases..."),
#     outputs="text",
#     title="Skin Disease Assistant",
#     description="Ask any questions related to skin diseases and get expert-like responses."
# )

# if __name__ == "__main__":
#     iface.launch()

import os
import gradio as gr
from huggingface_hub import InferenceClient
from dotenv import load_dotenv

# Load Hugging Face API token
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")

# Initialize Hugging Face client
client = InferenceClient(
    model="mistralai/Mistral-7B-Instruct-v0.3",
    token=HF_TOKEN
)

# System prompt about Indian monuments
system_message = (
    "You are an AI Dermatologist chatbot designed to assist users with skin by only providing text "
    "and if user information is not provided related to skin then ask what they want to know related to skin."
)

# Streaming chatbot logic
def respond(message, history):
    # Prepare messages with system prompt
    messages = [{"role": "system", "content": system_message}]
    for msg in history:
        messages.append(msg)
    messages.append({"role": "user", "content": message})

    # Stream response from the model
    response = ""
    for chunk in client.chat.completions.create(
        model="mistralai/Mistral-7B-Instruct-v0.3",
        messages=messages,
        max_tokens=1024,
        temperature=0.7,
        top_p=0.95,
        stream=True,
    ):
        token = chunk.choices[0].delta.get("content", "") or ""
        response += token
        yield response

# Create Gradio interface
with gr.Blocks() as demo:
    chatbot = gr.Chatbot(type='messages')  # Use modern message format
    gr.ChatInterface(fn=respond, chatbot=chatbot, type="messages")  # Match format

# Launch app
if __name__ == "__main__":
    demo.launch()