Spaces:
Running
Running
File size: 9,142 Bytes
8347b4f df848a8 2fbbdcf df848a8 f9a420a df848a8 2fbbdcf df848a8 f9a420a df848a8 2f8b5bf df848a8 f62a0c5 df848a8 f62a0c5 df848a8 f62a0c5 df848a8 2f8b5bf f62a0c5 df848a8 8347b4f f62a0c5 df848a8 f62a0c5 df848a8 f62a0c5 df848a8 2f8b5bf df848a8 f62a0c5 df848a8 f62a0c5 8347b4f f62a0c5 8347b4f df848a8 2fbbdcf 2f8b5bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
# import gradio as gr
# from huggingface_hub import InferenceClient
# # Initialize the client with your desired model
# client = InferenceClient("Bhaskar2611/Capstone")
# # Define the system prompt as an AI Dermatologist
# def format_prompt(message, history):
# prompt = "<s>"
# # Start the conversation with a system message
# prompt += "[INST] You are an AI Dermatologist chatbot designed to assist users with skin by only providing text and if user information is not provided related to skin then ask what they want to know related to skin.[/INST]"
# for user_prompt, bot_response in history:
# prompt += f"[INST] {user_prompt} [/INST]"
# prompt += f" {bot_response}</s> "
# prompt += f"[INST] {message} [/INST]"
# return prompt
# # Function to generate responses with the AI Dermatologist context
# def generate(
# prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0
# ):
# temperature = float(temperature)
# if temperature < 1e-2:
# temperature = 1e-2
# top_p = float(top_p)
# generate_kwargs = dict(
# temperature=temperature,
# max_new_tokens=max_new_tokens,
# top_p=top_p,
# repetition_penalty=repetition_penalty,
# do_sample=True,
# seed=42,
# )
# formatted_prompt = format_prompt(prompt, history)
# stream = client.text_generation(
# formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False
# )
# output = ""
# for response in stream:
# output += response.token.text
# yield output
# return output
# # Customizable input controls for the chatbot interface
# Settings = [
# gr.Slider(
# label="Temperature",
# value=0.9,
# minimum=0.0,
# maximum=1.0,
# step=0.05,
# interactive=True,
# info="Higher values produce more diverse outputs",
# ),
# gr.Slider(
# label="Max new tokens",
# value=256,
# minimum=0,
# maximum=1048,
# step=64,
# interactive=True,
# info="The maximum numbers of new tokens",
# ),
# gr.Slider(
# label="Top-p (nucleus sampling)",
# value=0.90,
# minimum=0.0,
# maximum=1,
# step=0.05,
# interactive=True,
# info="Higher values sample more low-probability tokens",
# ),
# gr.Slider(
# label="Repetition penalty",
# value=1.2,
# minimum=1.0,
# maximum=2.0,
# step=0.05,
# interactive=True,
# info="Penalize repeated tokens",
# )
# ]
# # Define the chatbot interface with the starting system message as AI Dermatologist
# gr.ChatInterface(
# fn=generate,
# chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, layout="panel"),
# additional_inputs = Settings,
# title="Skin Bot"
# ).launch(show_api=False)
# # Load your model after launching the interface
# # gr.load("models/Bhaskar2611/Capstone").launch()
# import gradio as gr
# from huggingface_hub import InferenceClient
# # Initialize the client with your Hugging Face token
# client = InferenceClient(
# model="HuggingFaceH4/zephyr-7b-beta",
# hf_token = os.getenv("HF_TOKEN")
# )
# # Define the system prompt as an AI Dermatologist
# def format_prompt(message, history):
# prompt = "<s>"
# prompt += "[INST] You are an AI Dermatologist chatbot designed to assist users with skin by only providing text and if user information is not provided related to skin then ask what they want to know related to skin.[/INST]"
# for user_prompt, bot_response in history:
# prompt += f"[INST] {user_prompt} [/INST] {bot_response}</s> "
# prompt += f"[INST] {message} [/INST]"
# return prompt
# # Function to generate responses
# def generate(prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
# temperature = float(temperature)
# if temperature < 1e-2:
# temperature = 1e-2
# top_p = float(top_p)
# generate_kwargs = dict(
# temperature=temperature,
# max_new_tokens=max_new_tokens,
# top_p=top_p,
# repetition_penalty=repetition_penalty,
# do_sample=True,
# seed=42,
# )
# formatted_prompt = format_prompt(prompt, history)
# stream = client.text_generation(
# formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False
# )
# output = ""
# for response in stream:
# output += response.token.text
# yield output
# return output
# # Sliders for customization
# Settings = [
# gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
# gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=1048, step=64, interactive=True, info="The maximum number of new tokens"),
# gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
# gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
# ]
# # Chat interface
# gr.ChatInterface(
# fn=generate,
# chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, layout="panel"),
# additional_inputs=Settings,
# title="Skin Bot"
# ).launch(show_api=False)
# # Load any additional models if needed
# # gr.load("models/Bhaskar2611/Capstone").launch()
# import os
# from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
# import gradio as gr
# # Load your Hugging Face token (if needed for private models or API limit increases)
# hf_token = os.environ.get("HF_TOKEN")
# # Model ID for Mistral 7B Instruct
# model_id = "mistralai/Mistral-7B-Instruct-v0.1"
# # Load tokenizer
# tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token)
# # BitsAndBytesConfig for 4-bit quantization to reduce memory usage
# bnb_config = BitsAndBytesConfig(load_in_4bit=True)
# # Load model with quantization and device mapping
# model = AutoModelForCausalLM.from_pretrained(
# model_id,
# quantization_config=bnb_config,
# device_map="auto",
# token=hf_token
# )
# # Skin assistant system prompt
# SKIN_ASSISTANT_PROMPT = (
# "You are a helpful assistant specialized in skin diseases and dermatology. "
# "Provide accurate, concise, and helpful advice about skin conditions, symptoms, "
# "treatments, and care. Always respond in a clear and empathetic way.\n\n"
# )
# def generate_response(user_input):
# prompt = SKIN_ASSISTANT_PROMPT + user_input
# inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# outputs = model.generate(
# **inputs,
# max_new_tokens=1024,
# do_sample=True,
# temperature=0.7,
# top_p=0.95,
# repetition_penalty=1.1
# )
# response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# return response.replace(SKIN_ASSISTANT_PROMPT, "").strip()
# # Gradio interface
# iface = gr.Interface(
# fn=generate_response,
# inputs=gr.Textbox(lines=3, placeholder="Ask about skin diseases..."),
# outputs="text",
# title="Skin Disease Assistant",
# description="Ask any questions related to skin diseases and get expert-like responses."
# )
# if __name__ == "__main__":
# iface.launch()
import os
import gradio as gr
from huggingface_hub import InferenceClient
from dotenv import load_dotenv
# Load Hugging Face API token
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
# Initialize Hugging Face client
client = InferenceClient(
model="mistralai/Mistral-7B-Instruct-v0.3",
token=HF_TOKEN
)
# System prompt about Indian monuments
system_message = (
"You are an AI Dermatologist chatbot designed to assist users with skin by only providing text "
"and if user information is not provided related to skin then ask what they want to know related to skin."
)
# Streaming chatbot logic
def respond(message, history):
# Prepare messages with system prompt
messages = [{"role": "system", "content": system_message}]
for msg in history:
messages.append(msg)
messages.append({"role": "user", "content": message})
# Stream response from the model
response = ""
for chunk in client.chat.completions.create(
model="mistralai/Mistral-7B-Instruct-v0.3",
messages=messages,
max_tokens=1024,
temperature=0.7,
top_p=0.95,
stream=True,
):
token = chunk.choices[0].delta.get("content", "") or ""
response += token
yield response
# Create Gradio interface
with gr.Blocks() as demo:
chatbot = gr.Chatbot(type='messages') # Use modern message format
gr.ChatInterface(fn=respond, chatbot=chatbot, type="messages") # Match format
# Launch app
if __name__ == "__main__":
demo.launch()
|