import json import requests import streamlit as st import random headers = {} MODELS = { "GPT-2 Base": { "url": "https://api-inference.huggingface.co/models/BigSalmon/InformalToFormalLincoln14" } } def query(payload, model_name): data = json.dumps(payload) print("model url:", MODELS[model_name]["url"]) response = requests.request( "POST", MODELS[model_name]["url"], headers=headers, data=data) return json.loads(response.content.decode("utf-8")) def process(text: str, model_name: str, max_len: int, temp: float, top_k: int, num_return_sequences:int, top_p: float): payload = { "inputs": text, "parameters": { "max_new_tokens": max_len, "top_k": top_k, "top_p": top_p, "temperature": temp, "num_return_sequences": num_return_sequences, "repetition_penalty": 2.0, }, "options": { "use_cache": True, } } return query(payload, model_name) st.set_page_config(page_title="Thai GPT2 Demo") st.title("🐘 Thai GPT2") st.sidebar.subheader("Configurable parameters") max_len = st.sidebar.text_input( "Maximum length", value=5, help="The maximum length of the sequence to be generated." ) temp = st.sidebar.slider( "Temperature", value=1.0, min_value=0.7, max_value=1.5, help="The value used to module the next token probabilities." ) top_k = st.sidebar.text_input( "Top k", value=50, help="The number of highest probability vocabulary tokens to keep for top-k-filtering." ) num_return_sequences = st.sidebar.text_input( "Returns", value=5, help="Number to return." ) top_p = st.sidebar.text_input( "Top p", value=0.95, help=" If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation." ) do_sample = st.sidebar.selectbox( 'Sampling?', (True, False), help="Whether or not to use sampling; use greedy decoding otherwise.") st.markdown( """Thai GPT-2 demo. Part of the [Huggingface JAX/Flax event](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/).""" ) model_name = st.selectbox('Model', (['GPT-2 Base'])) hello = ['Custom', 'Yellow'] prompt = st.selectbox('Prompt', options = hello) if prompt == "Custom": prompt_box = "Enter your text here" text = st.text_area("Enter text", prompt_box) if st.button("Run"): with st.spinner(text="Getting results..."): st.subheader("Result") print(f"maxlen:{max_len}, temp:{temp}, top_k:{top_k}, top_p:{top_p}") result = process(text=text, model_name=model_name, max_len=int(max_len), temp=temp, num_return_sequences = int(num_return_sequences), top_k=int(top_k), top_p=float(top_p)) st.write(result) if "error" in result: if type(result["error"]) is str: st.write(f'{result["error"]}. Please try it again in about {result["estimated_time"]:.0f} seconds') else: if type(result["error"]) is list: for error in result["error"]: st.write(f'{error}') else: print("hey")