import gradio as gr import os import torch from transformers import ( AutoTokenizer, AutoModelForCausalLM, pipeline, AutoProcessor, MusicgenForConditionalGeneration, ) from scipy.io.wavfile import write import tempfile from dotenv import load_dotenv import spaces load_dotenv() hf_token = os.getenv("HF_TOKEN") # --------------------------------------------------------------------- # Load Llama 3 Pipeline with Zero GPU (Encapsulated) # --------------------------------------------------------------------- @spaces.GPU(duration=300) def generate_script(user_prompt: str, model_id: str, token: str): try: tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token) model = AutoModelForCausalLM.from_pretrained( model_id, use_auth_token=token, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True, ) llama_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) system_prompt = ( "You are an expert radio imaging producer specializing in sound design and music. " "Take the user's concept and craft a concise, creative promo script with a strong focus on auditory elements and musical appeal." ) combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nRefined script:" result = llama_pipeline(combined_prompt, max_new_tokens=200, do_sample=True, temperature=0.9) return result[0]["generated_text"].split("Refined script:")[-1].strip() except Exception as e: return f"Error generating script: {e}" # --------------------------------------------------------------------- # Load MusicGen Model (Encapsulated) # --------------------------------------------------------------------- @spaces.GPU(duration=300) def generate_audio(prompt: str, audio_length: int): try: musicgen_model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small") musicgen_processor = AutoProcessor.from_pretrained("facebook/musicgen-small") musicgen_model.to("cuda") inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt") outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length) musicgen_model.to("cpu") sr = musicgen_model.config.audio_encoder.sampling_rate audio_data = outputs[0, 0].cpu().numpy() normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16") output_path = f"{tempfile.gettempdir()}/generated_audio.wav" write(output_path, sr, normalized_audio) return output_path except Exception as e: return f"Error generating audio: {e}" # --------------------------------------------------------------------- # Gradio Interface Functions # --------------------------------------------------------------------- def interface_generate_script(user_prompt, llama_model_id): return generate_script(user_prompt, llama_model_id, hf_token) def interface_generate_audio(script, audio_length): return generate_audio(script, audio_length) # --------------------------------------------------------------------- # Interface # --------------------------------------------------------------------- with gr.Blocks() as demo: # Header gr.Markdown(""" # 🎙️ AI-Powered Radio Imaging Studio 🚀 ### Create stunning **radio promos** with **Llama 3** and **MusicGen** 🔥 **Zero GPU** integration for efficiency and ease! ❤️ A huge thanks to the **Hugging Face community** for making this possible. """) # Script Generation Section gr.Markdown("## ✍️ Step 1: Generate Your Promo Script") with gr.Row(): user_prompt = gr.Textbox( label="🎤 Enter Promo Idea", placeholder="E.g., A 15-second energetic jingle for a morning talk show.", lines=2, info="Describe your promo idea clearly to generate a creative script." ) llama_model_id = gr.Textbox( label="🎛️ Llama 3 Model ID", value="meta-llama/Meta-Llama-3-8B-Instruct", info="Enter the Hugging Face model ID for Llama 3." ) generate_script_button = gr.Button("Generate Script ✨") script_output = gr.Textbox( label="📜 Generated Promo Script", lines=4, interactive=False, info="Your generated promo script will appear here." ) # Audio Generation Section gr.Markdown("## 🎧 Step 2: Generate Audio from Your Script") with gr.Row(): audio_length = gr.Slider( label="🎵 Audio Length (tokens)", minimum=128, maximum=1024, step=64, value=512, info="Select the desired audio token length." ) generate_audio_button = gr.Button("Generate Audio 🎶") audio_output = gr.Audio( label="🎶 Generated Audio File", type="filepath", interactive=False ) # Footer gr.Markdown("""

Created with ❤️ by bilsimaging.com Special thanks to the Hugging Face community for their incredible support and tools!

""", elem_id="footer") # Button Actions generate_script_button.click( fn=interface_generate_script, inputs=[user_prompt, llama_model_id], outputs=script_output, ) generate_audio_button.click( fn=interface_generate_audio, inputs=[script_output, audio_length], outputs=audio_output, ) # --------------------------------------------------------------------- # Launch App # --------------------------------------------------------------------- demo.launch(debug=True)