import gradio as gr import os import torch from transformers import ( AutoTokenizer, AutoModelForCausalLM, pipeline, AutoProcessor, MusicgenForConditionalGeneration, ) from scipy.io.wavfile import write from pydub import AudioSegment from pydub.playback import play import tempfile from dotenv import load_dotenv import spaces # Load environment variables load_dotenv() hf_token = os.getenv("HF_TOKEN") # --------------------------------------------------------------------- # Script Generation Function # --------------------------------------------------------------------- @spaces.GPU(duration=300) def generate_script(user_prompt: str, model_id: str, token: str, duration: int): try: tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token) model = AutoModelForCausalLM.from_pretrained( model_id, use_auth_token=token, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True, ) llama_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) system_prompt = ( f"You are an expert radio imaging producer specializing in sound design and music. " f"Based on the user's concept and the selected duration of {duration} seconds, craft a concise, engaging promo script. " f"Ensure the script fits within the time limit and suggest a matching music style that complements the theme." ) combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nRefined script and music suggestion:" result = llama_pipeline(combined_prompt, max_new_tokens=200, do_sample=True, temperature=0.9) generated_text = result[0]["generated_text"].split("Refined script and music suggestion:")[-1].strip() script, music_suggestion = generated_text.split("Music Suggestion:") return script.strip(), music_suggestion.strip() except Exception as e: return f"Error generating script: {e}", None # --------------------------------------------------------------------- # Voice-Over Generation Function # --------------------------------------------------------------------- @spaces.GPU(duration=300) def generate_voice(script: str, speaker: str): try: # Replace with your chosen TTS model tts_model = "coqui/XTTS-v2" processor = AutoProcessor.from_pretrained(tts_model) model = AutoModelForCausalLM.from_pretrained(tts_model) inputs = processor(script, return_tensors="pt") speech = model.generate(**inputs) output_path = f"{tempfile.gettempdir()}/generated_voice.wav" write(output_path, 22050, speech.cpu().numpy()) return output_path except Exception as e: return f"Error generating voice-over: {e}" # --------------------------------------------------------------------- # Music Generation Function # --------------------------------------------------------------------- @spaces.GPU(duration=300) def generate_music(prompt: str, audio_length: int): try: musicgen_model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small") musicgen_processor = AutoProcessor.from_pretrained("facebook/musicgen-small") device = "cuda" if torch.cuda.is_available() else "cpu" musicgen_model.to(device) inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt").to(device) outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length) audio_data = outputs[0, 0].cpu().numpy() normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16") output_path = f"{tempfile.gettempdir()}/generated_music.wav" write(output_path, 44100, normalized_audio) return output_path except Exception as e: return f"Error generating music: {e}" # --------------------------------------------------------------------- # Audio Blending Function with Ducking # --------------------------------------------------------------------- def blend_audio(voice_path: str, music_path: str, ducking: bool): try: voice = AudioSegment.from_file(voice_path) music = AudioSegment.from_file(music_path) if ducking: music = music - 10 # Lower music volume for ducking combined = music.overlay(voice) output_path = f"{tempfile.gettempdir()}/final_promo.wav" combined.export(output_path, format="wav") return output_path except Exception as e: return f"Error blending audio: {e}" # --------------------------------------------------------------------- # Gradio Interface # --------------------------------------------------------------------- def process_all(user_prompt, llama_model_id, duration, audio_length, speaker, ducking): script, music_suggestion = generate_script(user_prompt, llama_model_id, hf_token, duration) if "Error" in script: return script, None voice_path = generate_voice(script, speaker) if "Error" in voice_path: return voice_path, None music_path = generate_music(music_suggestion, audio_length) if "Error" in music_path: return music_path, None final_audio = blend_audio(voice_path, music_path, ducking) return f"Script:\n{script}\n\nMusic Suggestion:\n{music_suggestion}", final_audio with gr.Blocks() as demo: gr.Markdown(""" # 🎧 AI Promo Studio with Script, Voice, Music, and Mixing 🚀 Generate fully mixed promos effortlessly with AI-driven tools for radio and media! """) with gr.Row(): user_prompt = gr.Textbox(label="Promo Idea", placeholder="E.g., A 30-second promo for a morning show.") llama_model_id = gr.Textbox(label="Llama Model ID", value="meta-llama/Meta-Llama-3-8B-Instruct") duration = gr.Slider(label="Duration (seconds)", minimum=15, maximum=60, step=15, value=30) audio_length = gr.Slider(label="Music Length (tokens)", minimum=128, maximum=1024, step=64, value=512) speaker = gr.Textbox(label="Voice Style (optional)", placeholder="E.g., male, female, or neutral.") ducking = gr.Checkbox(label="Enable Ducking", value=True) generate_button = gr.Button("Generate Full Promo") script_output = gr.Textbox(label="Generated Script and Music Suggestion") audio_output = gr.Audio(label="Final Promo Audio", type="filepath") generate_button.click( fn=process_all, inputs=[user_prompt, llama_model_id, duration, audio_length, speaker, ducking], outputs=[script_output, audio_output], ) gr.Markdown("""

Created with ❤️ by bilsimaging.com

""") demo.launch(debug=True)