Spaces:
Running
Running
File size: 20,088 Bytes
57e04c3 1705c80 3cca1c2 1ca4ee7 c29409a 4a82770 1ca4ee7 3cca1c2 c29409a 3cca1c2 ab68bb9 1ca4ee7 1705c80 57e04c3 115b95d 3cca1c2 115b95d 3cca1c2 115b95d 3cca1c2 57e04c3 3cca1c2 1ca4ee7 3cca1c2 115b95d c7d9d32 1705c80 3cca1c2 115b95d 3cca1c2 115b95d 1ca4ee7 115b95d 57e04c3 3cca1c2 1ca4ee7 3cca1c2 1061730 3cca1c2 1061730 115b95d 1061730 8bc48fc 1061730 115b95d d999c28 115b95d d999c28 115b95d d999c28 115b95d d999c28 115b95d 57e04c3 115b95d 57e04c3 7b77d36 d999c28 7b77d36 d999c28 115b95d d999c28 7b77d36 d999c28 7b77d36 d999c28 7b77d36 115b95d d999c28 7b77d36 d999c28 7b77d36 d999c28 7b77d36 d999c28 7b77d36 d999c28 7b77d36 d999c28 7b77d36 d999c28 7b77d36 d999c28 7b77d36 d999c28 7b77d36 d999c28 7b77d36 d999c28 7b77d36 d999c28 57e04c3 1ca4ee7 3cca1c2 1ca4ee7 57e04c3 3cca1c2 1ca4ee7 3cca1c2 1ca4ee7 3cca1c2 d999c28 3cca1c2 1061730 3cca1c2 1ca4ee7 3cca1c2 115b95d 1ca4ee7 3cca1c2 8bc48fc 3cca1c2 c29409a 1705c80 3cca1c2 c29409a 25a6ec3 115b95d c29409a 25a6ec3 3cca1c2 c29409a 115b95d c29409a 3cca1c2 c29409a 1ca4ee7 1061730 986cdbd 1061730 986cdbd 1061730 3cca1c2 1061730 3cca1c2 115b95d 4f5341e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
# memory.py
import re, time, hashlib, asyncio, os
from collections import defaultdict, deque
from typing import List, Dict
import numpy as np
import faiss
from sentence_transformers import SentenceTransformer
from google import genai # must be configured in app.py and imported globally
import logging
_LLM_SMALL = "gemini-2.5-flash-lite-preview-06-17"
# Load embedding model
EMBED = SentenceTransformer("/app/model_cache", device="cpu").half()
logger = logging.getLogger("rag-agent")
logging.basicConfig(level=logging.INFO, format="%(asctime)s — %(name)s — %(levelname)s — %(message)s", force=True) # Change INFO to DEBUG for full-ctx JSON loader
api_key = os.getenv("FlashAPI")
client = genai.Client(api_key=api_key)
class MemoryManager:
def __init__(self, max_users=1000, history_per_user=20, max_chunks=60):
# STM: recent conversation summaries (topic + summary), up to 5 entries
self.stm_summaries = defaultdict(lambda: deque(maxlen=history_per_user)) # deque of {topic,text,vec,timestamp,used}
# Legacy raw cache (kept for compatibility if needed)
self.text_cache = defaultdict(lambda: deque(maxlen=history_per_user))
# LTM: semantic chunk store (approx 3 chunks x 20 rounds)
self.chunk_index = defaultdict(self._new_index) # user_id -> faiss index
self.chunk_meta = defaultdict(list) # '' -> list[{text,tag,vec,timestamp,used}]
self.user_queue = deque(maxlen=max_users) # LRU of users
self.max_chunks = max_chunks # hard cap per user
self.chunk_cache = {} # hash(query+resp) -> [chunks]
# ---------- Public API ----------
def add_exchange(self, user_id: str, query: str, response: str, lang: str = "EN"):
self._touch_user(user_id)
# Keep raw record (optional)
self.text_cache[user_id].append(((query or "").strip(), (response or "").strip()))
if not response: return []
# Avoid re-chunking identical response
cache_key = hashlib.md5((query + response).encode()).hexdigest()
if cache_key in self.chunk_cache:
chunks = self.chunk_cache[cache_key]
else:
chunks = self.chunk_response(response, lang, question=query)
self.chunk_cache[cache_key] = chunks
# Update STM with merging/deduplication
for chunk in chunks:
self._upsert_stm(user_id, chunk, lang)
# Update LTM with merging/deduplication
self._upsert_ltm(user_id, chunks, lang)
return chunks
def get_relevant_chunks(self, user_id: str, query: str, top_k: int = 3, min_sim: float = 0.30) -> List[str]:
"""Return texts of chunks whose cosine similarity ≥ min_sim."""
if self.chunk_index[user_id].ntotal == 0:
return []
# Encode chunk
qvec = self._embed(query)
sims, idxs = self.chunk_index[user_id].search(np.array([qvec]), k=top_k)
results = []
# Append related result with smart-decay to optimize storage and prioritize most-recent chat
for sim, idx in zip(sims[0], idxs[0]):
if idx < len(self.chunk_meta[user_id]) and sim >= min_sim:
chunk = self.chunk_meta[user_id][idx]
chunk["used"] += 1 # increment usage
# Decay function
age_sec = time.time() - chunk["timestamp"]
decay = 1.0 / (1.0 + age_sec / 300) # 5-min half-life
score = sim * decay * (1 + 0.1 * chunk["used"])
# Append chunk with score
results.append((score, chunk))
# Sort result on best scored
results.sort(key=lambda x: x[0], reverse=True)
# logger.info(f"[Memory] RAG Retrieved Topic: {results}") # Inspect vector data
return [f"### Topic: {c['tag']}\n{c['text']}" for _, c in results]
def get_recent_chat_history(self, user_id: str, num_turns: int = 5) -> List[Dict]:
"""
Get the most recent short-term memory summaries.
Returns: a list of entries containing only the summarized bot context.
"""
if user_id not in self.stm_summaries:
return []
recent = list(self.stm_summaries[user_id])[-num_turns:]
formatted = []
for entry in recent:
formatted.append({
"user": "",
"bot": f"Topic: {entry['topic']}\n{entry['text']}",
"timestamp": entry.get("timestamp", time.time())
})
return formatted
def get_context(self, user_id: str, num_turns: int = 5) -> str:
# Prefer STM summaries
history = self.get_recent_chat_history(user_id, num_turns=num_turns)
return "\n".join(h["bot"] for h in history)
def get_contextual_chunks(self, user_id: str, current_query: str, lang: str = "EN") -> str:
"""
Use Gemini Flash Lite to create a summarization of relevant context from both recent history and RAG chunks.
This ensures conversational continuity while providing a concise summary for the main LLM.
"""
# Get both types of context
recent_history = self.get_recent_chat_history(user_id, num_turns=5)
rag_chunks = self.get_relevant_chunks(user_id, current_query, top_k=3)
logger.info(f"[Contextual] Retrieved {len(recent_history)} recent history items")
logger.info(f"[Contextual] Retrieved {len(rag_chunks)} RAG chunks")
# Return empty string if no context is found
if not recent_history and not rag_chunks:
logger.info(f"[Contextual] No context found, returning empty string")
return ""
# Prepare context for Gemini to summarize
context_parts = []
# Add recent chat history
if recent_history:
history_text = "\n".join([
f"User: {item['user']}\nBot: {item['bot']}"
for item in recent_history
])
context_parts.append(f"Recent conversation history:\n{history_text}")
# Add RAG chunks
if rag_chunks:
rag_text = "\n".join(rag_chunks)
context_parts.append(f"Semantically relevant historical medical information:\n{rag_text}")
# Build summarization prompt
summarization_prompt = f"""
You are a medical assistant creating a concise summary of conversation context for continuity.
Current user query: "{current_query}"
Available context information:
{chr(10).join(context_parts)}
Task: Create a brief, coherent summary that captures the key points from the conversation history and relevant medical information that are important for understanding the current query.
Guidelines:
1. Focus on medical symptoms, diagnoses, treatments, or recommendations mentioned
2. Include any patient concerns or questions that are still relevant
3. Highlight any follow-up needs or pending clarifications
4. Keep the summary concise but comprehensive enough for context
5. Maintain conversational flow and continuity
Output: Provide a single, well-structured summary paragraph that can be used as context for the main LLM to provide a coherent response.
If no relevant context exists, return "No relevant context found."
Language context: {lang}
"""
logger.debug(f"[Contextual] Full prompt: {summarization_prompt}")
# Loop through the prompt and log the length of each part
try:
# Use Gemini Flash Lite for summarization
client = genai.Client(api_key=os.getenv("FlashAPI"))
result = client.models.generate_content(
model=_LLM_SMALL,
contents=summarization_prompt
)
summary = result.text.strip()
if "No relevant context found" in summary:
logger.info(f"[Contextual] Gemini indicated no relevant context found")
return ""
logger.info(f"[Contextual] Gemini created summary: {summary[:100]}...")
return summary
except Exception as e:
logger.warning(f"[Contextual] Gemini summarization failed: {e}")
logger.info(f"[Contextual] Using fallback summarization method")
# Fallback: create a simple summary
fallback_summary = []
# Fallback: add recent history
if recent_history:
recent_summary = f"Recent conversation: User asked about {recent_history[-1]['user'][:50]}... and received a response about {recent_history[-1]['bot'][:50]}..."
fallback_summary.append(recent_summary)
logger.info(f"[Contextual] Fallback: Added recent history summary")
# Fallback: add RAG chunks
if rag_chunks:
rag_summary = f"Relevant medical information: {len(rag_chunks)} chunks found covering various medical topics."
fallback_summary.append(rag_summary)
logger.info(f"[Contextual] Fallback: Added RAG chunks summary")
final_fallback = " ".join(fallback_summary) if fallback_summary else ""
return final_fallback
def reset(self, user_id: str):
self._drop_user(user_id)
# ---------- Internal helpers ----------
def _touch_user(self, user_id: str):
if user_id not in self.text_cache and len(self.user_queue) >= self.user_queue.maxlen:
self._drop_user(self.user_queue.popleft())
if user_id in self.user_queue:
self.user_queue.remove(user_id)
self.user_queue.append(user_id)
def _drop_user(self, user_id: str):
self.text_cache.pop(user_id, None)
self.chunk_index.pop(user_id, None)
self.chunk_meta.pop(user_id, None)
if user_id in self.user_queue:
self.user_queue.remove(user_id)
def _rebuild_index(self, user_id: str, keep_last: int):
"""Trim chunk list + rebuild FAISS index for user."""
self.chunk_meta[user_id] = self.chunk_meta[user_id][-keep_last:]
index = self._new_index()
# Store each chunk's vector once and reuse it.
for chunk in self.chunk_meta[user_id]:
index.add(np.array([chunk["vec"]]))
self.chunk_index[user_id] = index
@staticmethod
def _new_index():
# Use cosine similarity (vectors must be L2-normalised)
return faiss.IndexFlatIP(384)
@staticmethod
def _embed(text: str):
vec = EMBED.encode(text, convert_to_numpy=True)
# L2 normalise for cosine on IndexFlatIP
return vec / (np.linalg.norm(vec) + 1e-9)
def chunk_response(self, response: str, lang: str, question: str = "") -> List[Dict]:
"""
Calls Gemini to:
- Translate (if needed)
- Chunk by context/topic (exclude disclaimer section)
- Summarise
Returns: [{"tag": ..., "text": ...}, ...]
"""
if not response: return []
# Gemini instruction
instructions = []
# if lang.upper() != "EN":
# instructions.append("- Translate the response to English.")
instructions.append("- Break the translated (or original) text into semantically distinct parts, grouped by medical topic, symptom, assessment, plan, or instruction (exclude disclaimer section).")
instructions.append("- For each part, generate a clear, concise summary. The summary may vary in length depending on the complexity of the topic — do not omit key clinical instructions and exact medication names/doses if present.")
instructions.append("- At the start of each part, write `Topic: <concise but specific sentence (10-20 words) capturing patient context, condition, and action>`.")
instructions.append("- Separate each part using three dashes `---` on a new line.")
# if lang.upper() != "EN":
# instructions.append(f"Below is the user-provided medical response written in `{lang}`")
# Gemini prompt
prompt = f"""
You are a medical assistant helping organize and condense a clinical response.
If helpful, use the user's latest question for context to craft specific topics.
User's latest question (context): {question}
------------------------
{response}
------------------------
Please perform the following tasks:
{chr(10).join(instructions)}
Output only the structured summaries, separated by dashes.
"""
retries = 0
while retries < 5:
try:
client = genai.Client(api_key=os.getenv("FlashAPI"))
result = client.models.generate_content(
model=_LLM_SMALL,
contents=prompt
# ,generation_config={"temperature": 0.4} # Skip temp configs for gem-flash
)
output = result.text.strip()
logger.info(f"[Memory] 📦 Gemini summarized chunk output: {output}")
return [
{"tag": self._quick_extract_topic(chunk), "text": chunk.strip()}
for chunk in output.split('---') if chunk.strip()
]
except Exception as e:
logger.warning(f"[Memory] ❌ Gemini chunking failed: {e}")
retries += 1
time.sleep(0.5)
return [{"tag": "general", "text": response.strip()}] # fallback
@staticmethod
def _quick_extract_topic(chunk: str) -> str:
"""Heuristically extract the topic from a chunk (title line or first 3 words)."""
# Expecting 'Topic: <something>'
match = re.search(r'^Topic:\s*(.+)', chunk, re.IGNORECASE | re.MULTILINE)
if match:
return match.group(1).strip()
lines = chunk.strip().splitlines()
for line in lines:
if len(line.split()) <= 8 and line.strip().endswith(":"):
return line.strip().rstrip(":")
return " ".join(chunk.split()[:3]).rstrip(":.,")
# ---------- New merging/dedup logic ----------
def _upsert_stm(self, user_id: str, chunk: Dict, lang: str):
"""Insert or merge a summarized chunk into STM with semantic dedup/merge.
Identical: replace the older with new. Partially similar: merge extra details from older into newer.
"""
topic = self._enrich_topic(chunk.get("tag", ""), chunk.get("text", ""))
text = chunk.get("text", "").strip()
vec = self._embed(text)
now = time.time()
entry = {"topic": topic, "text": text, "vec": vec, "timestamp": now, "used": 0}
stm = self.stm_summaries[user_id]
if not stm:
stm.append(entry)
return
# find best match
best_idx = -1
best_sim = -1.0
for i, e in enumerate(stm):
sim = float(np.dot(vec, e["vec"]))
if sim > best_sim:
best_sim = sim
best_idx = i
if best_sim >= 0.92: # nearly identical
# replace older with current
stm.rotate(-best_idx)
stm.popleft()
stm.rotate(best_idx)
stm.append(entry)
elif best_sim >= 0.75: # partially similar → merge
base = stm[best_idx]
merged_text = self._merge_texts(new_text=text, old_text=base["text"]) # add bits from old not in new
merged_topic = base["topic"] if len(base["topic"]) > len(topic) else topic
merged_vec = self._embed(merged_text)
merged_entry = {"topic": merged_topic, "text": merged_text, "vec": merged_vec, "timestamp": now, "used": base.get("used", 0)}
stm.rotate(-best_idx)
stm.popleft()
stm.rotate(best_idx)
stm.append(merged_entry)
else:
stm.append(entry)
def _upsert_ltm(self, user_id: str, chunks: List[Dict], lang: str):
"""Insert or merge chunks into LTM with semantic dedup/merge, then rebuild index.
Keeps only the most recent self.max_chunks entries.
"""
current_list = self.chunk_meta[user_id]
for chunk in chunks:
text = chunk.get("text", "").strip()
if not text:
continue
vec = self._embed(text)
topic = self._enrich_topic(chunk.get("tag", ""), text)
now = time.time()
new_entry = {"tag": topic, "text": text, "vec": vec, "timestamp": now, "used": 0}
if not current_list:
current_list.append(new_entry)
continue
# find best similar entry
best_idx = -1
best_sim = -1.0
for i, e in enumerate(current_list):
sim = float(np.dot(vec, e["vec"]))
if sim > best_sim:
best_sim = sim
best_idx = i
if best_sim >= 0.92:
# replace older with new
current_list[best_idx] = new_entry
elif best_sim >= 0.75:
# merge details
base = current_list[best_idx]
merged_text = self._merge_texts(new_text=text, old_text=base["text"]) # add unique sentences from old
merged_topic = base["tag"] if len(base["tag"]) > len(topic) else topic
merged_vec = self._embed(merged_text)
current_list[best_idx] = {"tag": merged_topic, "text": merged_text, "vec": merged_vec, "timestamp": now, "used": base.get("used", 0)}
else:
current_list.append(new_entry)
# Trim and rebuild index
if len(current_list) > self.max_chunks:
current_list[:] = current_list[-self.max_chunks:]
self._rebuild_index(user_id, keep_last=self.max_chunks)
@staticmethod
def _split_sentences(text: str) -> List[str]:
# naive sentence splitter by ., !, ?
parts = re.split(r"(?<=[\.!?])\s+", text.strip())
return [p.strip() for p in parts if p.strip()]
def _merge_texts(self, new_text: str, old_text: str) -> str:
"""Append sentences from old_text that are not already contained in new_text (by fuzzy match)."""
new_sents = self._split_sentences(new_text)
old_sents = self._split_sentences(old_text)
new_set = set(s.lower() for s in new_sents)
merged = list(new_sents)
for s in old_sents:
s_norm = s.lower()
# consider present if significant overlap with any existing sentence
if s_norm in new_set:
continue
# simple containment check
if any(self._overlap_ratio(s_norm, t.lower()) > 0.8 for t in merged):
continue
merged.append(s)
return " ".join(merged)
@staticmethod
def _overlap_ratio(a: str, b: str) -> float:
"""Compute token overlap ratio between two sentences."""
ta = set(re.findall(r"\w+", a))
tb = set(re.findall(r"\w+", b))
if not ta or not tb:
return 0.0
inter = len(ta & tb)
union = len(ta | tb)
return inter / union
@staticmethod
def _enrich_topic(topic: str, text: str) -> str:
"""Make topic more descriptive if it's too short by using the first sentence of the text.
Does not call LLM to keep latency low.
"""
topic = (topic or "").strip()
if len(topic.split()) < 5 or len(topic) < 20:
sents = re.split(r"(?<=[\.!?])\s+", text.strip())
if sents:
first = sents[0]
# cap to ~16 words
words = first.split()
if len(words) > 16:
first = " ".join(words[:16])
# ensure capitalized
return first.strip().rstrip(':')
return topic |