# download_model.py ### --- A. transformer and embedder --- import os import shutil from huggingface_hub import snapshot_download # Set up paths MODEL_REPO = "sentence-transformers/all-MiniLM-L6-v2" MODEL_CACHE_DIR = "/app/model_cache" HF_CACHE_DIR = os.getenv("HF_HOME", "/home/user/.cache/huggingface") print("⏳ Downloading the SentenceTransformer model...") # Download directly into /app/model_cache to avoid duplicating files from HF cache model_path = snapshot_download( repo_id=MODEL_REPO, cache_dir=HF_CACHE_DIR, # Store HF cache in user cache dir local_dir=MODEL_CACHE_DIR, # Place usable model here local_dir_use_symlinks=False # Copy files into local_dir (no symlinks) ) print("Model path: ", model_path) if not os.path.exists(MODEL_CACHE_DIR): os.makedirs(MODEL_CACHE_DIR) # Verify structure after moving print("\n📂 LLM Model Structure (Build Level):") for root, dirs, files in os.walk(MODEL_CACHE_DIR): print(f"📁 {root}/") for file in files: print(f" 📄 {file}") ### --- B. translation modules --- # Optional pre-download of translation models. These can be very large and # may exceed build storage limits on constrained environments (e.g., HF Spaces). # Control with env var PRELOAD_TRANSLATORS ("1" to enable; default: disabled). PRELOAD_TRANSLATORS = os.getenv("PRELOAD_TRANSLATORS", "0") if PRELOAD_TRANSLATORS == "1": try: from transformers import pipeline print("⏬ Pre-downloading Vietnamese–English translator...") _ = pipeline("translation", model="VietAI/envit5-translation", src_lang="vi", tgt_lang="en", device=-1) print("⏬ Pre-downloading Chinese–English translator...") _ = pipeline("translation", model="Helsinki-NLP/opus-mt-zh-en", device=-1) print("✅ Translators preloaded.") except Exception as e: print(f"⚠️ Skipping translator preload due to error: {e}") else: print("ℹ️ Skipping translator pre-download (PRELOAD_TRANSLATORS != '1'). They will lazy-load at runtime.")