File size: 22,060 Bytes
e49993e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
# MCP & Agent Integration for Laban Movement Analysis

This project provides comprehensive MCP (Model Context Protocol) integration and agent-ready APIs for professional movement analysis with pose estimation, AI action recognition, and automation capabilities.

## πŸš€ Quick Start

### 1. Install All Dependencies

```bash
# Clone the repository
git clone https://github.com/[your-repo]/labanmovementanalysis
cd labanmovementanalysis

# Install core dependencies
pip install -r backend/requirements.txt

# Install MCP and enhanced features
pip install -r backend/requirements-mcp.txt
```

### 2. Start the MCP Server

```bash
# Start MCP server for AI assistants
python -m backend.mcp_server
```

### 3. Configure Your AI Assistant

Add to your Claude Desktop or other MCP-compatible assistant configuration:

```json
{
  "mcpServers": {
    "laban-movement-analysis": {
      "command": "python",
      "args": ["-m", "backend.mcp_server"],
      "env": {
        "PYTHONPATH": "/path/to/labanmovementanalysis"
      }
    }
  }
}
```

## πŸ› οΈ Enhanced MCP Tools

### 1. `analyze_video`
Comprehensive video analysis with enhanced features including SkateFormer AI and multiple pose models.

**Parameters:**
- `video_path` (string): Path or URL to video (supports YouTube, Vimeo, local files)
- `model` (string, optional): Advanced pose model selection:
  - **MediaPipe**: `mediapipe-lite`, `mediapipe-full`, `mediapipe-heavy`
  - **MoveNet**: `movenet-lightning`, `movenet-thunder`
  - **YOLO**: `yolo-v8-n/s/m/l`, `yolo-v11-n/s/m/l`

- `enable_visualization` (boolean, optional): Generate annotated video
- `include_keypoints` (boolean, optional): Include raw keypoint data
- `use_skateformer` (boolean, optional): Enable AI action recognition

**Examples:**
```
Analyze the dance video at https://youtube.com/watch?v=dQw4w9WgXcQ using SkateFormer AI
Analyze movement in video.mp4 using yolo-v11-s model with visualization
Process the exercise video with mediapipe-full and include keypoints
```

### 2. `get_analysis_summary`
Get human-readable summaries with enhanced AI insights.

**Parameters:**
- `analysis_id` (string): ID from previous analysis

**Enhanced Output Includes:**
- SkateFormer action recognition results
- Movement quality metrics (rhythm, complexity, symmetry)
- Temporal action segmentation
- Video source metadata (YouTube/Vimeo titles, etc.)

**Example:**
```
Get a detailed summary of analysis dance_2024-01-01T12:00:00 including AI insights
```

### 3. `list_available_models`
Comprehensive list of all 20+ pose estimation models with detailed specifications.

**Enhanced Model Information:**
- Performance characteristics (speed, accuracy, memory usage)
- Recommended use cases (real-time, research, production)
- Hardware requirements (CPU, GPU, memory)
- Keypoint specifications (17 COCO, 33 MediaPipe)

**Example:**
```
What pose estimation models are available for real-time processing?
List all YOLO v11 model variants with their specifications
```

### 4. `batch_analyze`
Enhanced batch processing with parallel execution and progress tracking.

**Parameters:**
- `video_paths` (array): List of video paths/URLs (supports mixed sources)
- `model` (string, optional): Pose estimation model for all videos
- `parallel` (boolean, optional): Enable parallel processing
- `use_skateformer` (boolean, optional): Enable AI analysis for all videos
- `output_format` (string, optional): Output format ("summary", "structured", "full")

**Enhanced Features:**
- Mixed source support (local files + YouTube URLs)
- Progress tracking and partial results
- Resource management and optimization
- Failure recovery and retry logic

**Examples:**
```
Analyze all dance videos in the playlist with SkateFormer AI
Batch process exercise videos using yolo-v11-s with parallel execution
```

### 5. `compare_movements`
Advanced movement comparison with AI-powered insights.

**Parameters:**
- `analysis_id1` (string): First analysis ID  
- `analysis_id2` (string): Second analysis ID
- `comparison_type` (string, optional): Type of comparison ("basic", "detailed", "ai_enhanced")

**Enhanced Comparison Features:**
- SkateFormer action similarity analysis
- Movement quality comparisons (rhythm, complexity, symmetry)
- Temporal pattern matching
- Statistical significance testing

**Example:**
```
Compare the movement patterns between the two dance analyses with AI insights
Detailed comparison of exercise form between beginner and expert videos
```

### 6. `real_time_analysis` (New)
Start/stop real-time WebRTC analysis.

**Parameters:**
- `action` (string): "start" or "stop"
- `model` (string, optional): Real-time optimized model
- `stream_config` (object, optional): WebRTC configuration

**Example:**
```
Start real-time movement analysis using mediapipe-lite
```

### 7. `filter_videos_advanced` (New)
Advanced video filtering with AI-powered criteria.

**Parameters:**
- `video_paths` (array): List of video paths/URLs
- `criteria` (object): Enhanced filtering criteria including:
  - Traditional LMA metrics (direction, intensity, fluidity)
  - SkateFormer actions (dancing, jumping, etc.)
  - Movement qualities (rhythm, complexity, symmetry)
  - Temporal characteristics (duration, segment count)

**Example:**
```
Filter videos for high-energy dance movements with good rhythm
Find exercise videos with proper form (high fluidity and symmetry)
```

## πŸ€– Enhanced Agent API

### Comprehensive Python Agent API

```python
from gradio_labanmovementanalysis import LabanMovementAnalysis
from gradio_labanmovementanalysis.agent_api import (
    LabanAgentAPI,
    PoseModel,
    MovementDirection,
    MovementIntensity,
    analyze_and_summarize
)

# Initialize with all features enabled
analyzer = LabanMovementAnalysis(
    enable_skateformer=True,
    enable_webrtc=True,
    enable_visualization=True
)

agent_api = LabanAgentAPI(analyzer=analyzer)
```

### Advanced Analysis Workflows

```python
# YouTube video analysis with AI
result = agent_api.analyze(
    "https://youtube.com/watch?v=...",
    model=PoseModel.YOLO_V11_S,
    use_skateformer=True,
    generate_visualization=True
)

# Enhanced batch processing
results = agent_api.batch_analyze(
    ["video1.mp4", "https://youtube.com/watch?v=...", "https://vimeo.com/..."],
    model=PoseModel.YOLO_V11_S,
    parallel=True,
    use_skateformer=True
)

# AI-powered movement filtering
filtered = agent_api.filter_by_movement_advanced(
    video_paths,
    skateformer_actions=["dancing", "jumping"],
    movement_qualities={"rhythm": 0.8, "complexity": 0.6},
    traditional_criteria={
        "direction": MovementDirection.UP,
        "intensity": MovementIntensity.HIGH,
        "min_fluidity": 0.7
    }
)

# Real-time analysis control
agent_api.start_realtime_analysis(model=PoseModel.MEDIAPIPE_LITE)
live_metrics = agent_api.get_realtime_metrics()
agent_api.stop_realtime_analysis()
```

### Enhanced Quick Functions

```python
from gradio_labanmovementanalysis import (
    quick_analyze_enhanced,
    analyze_and_summarize_with_ai,
    compare_videos_detailed
)

# Enhanced analysis with AI
data = quick_analyze_enhanced(
    "https://youtube.com/watch?v=...",
    model="yolo-v11-s",
    use_skateformer=True
)

# AI-powered summary
summary = analyze_and_summarize_with_ai(
    "dance_video.mp4",
    include_skateformer=True,
    detail_level="comprehensive"
)

# Detailed video comparison
comparison = compare_videos_detailed(
    "video1.mp4", 
    "video2.mp4",
    include_ai_analysis=True
)
```

## 🌐 Enhanced Gradio 5 Agent Features

### Comprehensive API Endpoints

The unified Gradio 5 app exposes these endpoints optimized for agents:

1. **`/analyze_standard`** - Basic LMA analysis
2. **`/analyze_enhanced`** - Advanced analysis with all features
3. **`/analyze_agent`** - Agent-optimized structured output
4. **`/batch_analyze`** - Efficient multiple video processing
5. **`/filter_videos`** - Movement-based filtering
6. **`/compare_models`** - Model performance comparison
7. **`/real_time_start`** - Start WebRTC real-time analysis
8. **`/real_time_stop`** - Stop WebRTC real-time analysis

### Enhanced Gradio Client Usage

```python
from gradio_client import Client

# Connect to unified demo
client = Client("http://localhost:7860")

# Enhanced single analysis
result = client.predict(
    video_input="https://youtube.com/watch?v=...",
    model="yolo-v11-s",
    enable_viz=True,
    use_skateformer=True,
    include_keypoints=False,
    api_name="/analyze_enhanced"
)

# Agent-optimized batch processing
batch_results = client.predict(
    files=["video1.mp4", "video2.mp4"],
    model="yolo-v11-s",
    api_name="/batch_analyze"
)

# Advanced movement filtering
filtered_results = client.predict(
    files=video_list,
    direction_filter="up",
    intensity_filter="high", 
    fluidity_threshold=0.7,
    expansion_threshold=0.5,
    api_name="/filter_videos"
)

# Model comparison analysis
comparison = client.predict(
    video="test_video.mp4",
    model1="mediapipe-full",
    model2="yolo-v11-s",
    api_name="/compare_models"
)
```

## πŸ“Š Enhanced Output Formats

### AI-Enhanced Summary Format
```
🎭 Movement Analysis Summary for "Dance Performance"
Source: YouTube (10.5 seconds, 30fps)
Model: YOLO-v11-S with SkateFormer AI

πŸ“Š Traditional LMA Metrics:
β€’ Primary direction: up (65% of frames)
β€’ Movement intensity: high (80% of frames)  
β€’ Average speed: fast (2.3 units/frame)
β€’ Fluidity score: 0.85/1.00 (very smooth)
β€’ Expansion score: 0.72/1.00 (moderately extended)

πŸ€– SkateFormer AI Analysis:
β€’ Detected actions: dancing (95% confidence), jumping (78% confidence)
β€’ Movement qualities:
  - Rhythm: 0.89/1.00 (highly rhythmic)
  - Complexity: 0.76/1.00 (moderately complex)
  - Symmetry: 0.68/1.00 (slightly asymmetric)
  - Smoothness: 0.85/1.00 (very smooth)
  - Energy: 0.88/1.00 (high energy)

⏱️ Temporal Analysis:
β€’ 7 movement segments identified
β€’ Average segment duration: 1.5 seconds
β€’ Transition quality: smooth (0.82/1.00)

🎯 Overall Assessment: Excellent dance performance with high energy, 
good rhythm, and smooth transitions. Slightly asymmetric but shows 
advanced movement complexity.
```

### Enhanced Structured Format
```json
{
    "success": true,
    "video_metadata": {
        "source": "youtube",
        "title": "Dance Performance",
        "duration": 10.5,
        "platform_id": "dQw4w9WgXcQ"
    },
    "model_info": {
        "pose_model": "yolo-v11-s",
        "ai_enhanced": true,
        "skateformer_enabled": true
    },
    "lma_metrics": {
        "direction": "up",
        "intensity": "high",
        "speed": "fast",
        "fluidity": 0.85,
        "expansion": 0.72
    },
    "skateformer_analysis": {
        "actions": [
            {"type": "dancing", "confidence": 0.95, "duration": 8.2},
            {"type": "jumping", "confidence": 0.78, "duration": 2.3}
        ],
        "movement_qualities": {
            "rhythm": 0.89,
            "complexity": 0.76,
            "symmetry": 0.68,
            "smoothness": 0.85,
            "energy": 0.88
        },
        "temporal_segments": 7,
        "transition_quality": 0.82
    },
    "performance_metrics": {
        "processing_time": 12.3,
        "frames_analyzed": 315,
        "keypoints_detected": 24
    }
}
```

### Comprehensive JSON Format
Complete analysis including frame-by-frame data, SkateFormer attention maps, movement trajectories, and statistical summaries.

## πŸ—οΈ Enhanced Architecture

```
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                    AI Assistant Integration                  β”‚
β”‚          (Claude, GPT, Local Models via MCP)               β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                      β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                   MCP Server                                β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”β”‚
β”‚  β”‚   Video     β”‚ β”‚   Enhanced  β”‚ β”‚      Real-time          β”‚β”‚
β”‚  β”‚  Analysis   β”‚ β”‚    Batch    β”‚ β”‚      WebRTC             β”‚β”‚
β”‚  β”‚   Tools     β”‚ β”‚ Processing  β”‚ β”‚     Analysis            β”‚β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                      β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚              Enhanced Agent API Layer                       β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”β”‚
β”‚  β”‚  Movement   β”‚ β”‚ AI-Enhanced β”‚ β”‚     Advanced            β”‚β”‚
β”‚  β”‚  Filtering  β”‚ β”‚ Comparisons β”‚ β”‚    Workflows            β”‚β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                      β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚             Core Analysis Engine                            β”‚
β”‚                                                             β”‚
β”‚  πŸ“Ή Video Input    πŸ€– Pose Models   🎭 SkateFormer AI      β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”β”‚
β”‚  β”‚Local Files  β”‚   β”‚MediaPipe(3) β”‚   β”‚  Action Recognition β”‚β”‚
β”‚  β”‚YouTube URLs β”‚   β”‚MoveNet(2)   β”‚   β”‚Movement Qualities   β”‚β”‚
β”‚  β”‚Vimeo URLs   β”‚   β”‚YOLO(8)      β”‚   β”‚Temporal Segments    β”‚β”‚
β”‚  β”‚Direct URLs  β”‚   β”‚            β”‚   β”‚Attention Analysis   β”‚β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜β”‚
β”‚                                                             β”‚
β”‚  πŸ“Š LMA Engine     πŸ“Ή WebRTC       🎨 Visualization        β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”β”‚
β”‚  β”‚Direction    β”‚   β”‚Live Camera  β”‚   β”‚  Pose Overlays      β”‚β”‚
β”‚  β”‚Intensity    β”‚   β”‚Real-time    β”‚   β”‚  Motion Trails      β”‚β”‚
β”‚  β”‚Speed/Flow   β”‚   β”‚Sub-100ms    β”‚   β”‚  Metric Displays    β”‚β”‚
β”‚  β”‚Expansion    β”‚   β”‚Adaptive FPS β”‚   β”‚  AI Visualizations  β”‚β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
```

## πŸ“ Advanced Agent Workflows

### 1. Comprehensive Dance Analysis Pipeline
```python
# Multi-source dance video analysis
videos = [
    "local_dance.mp4",
    "https://youtube.com/watch?v=dance1",
    "https://vimeo.com/dance2"
]

# Batch analyze with AI
results = agent_api.batch_analyze(
    videos,
    model=PoseModel.YOLO_V11_S,
    use_skateformer=True,
    parallel=True
)

# Filter for high-quality performances
excellent_dances = agent_api.filter_by_movement_advanced(
    videos,
    skateformer_actions=["dancing"],
    movement_qualities={
        "rhythm": 0.8,
        "complexity": 0.7,
        "energy": 0.8
    },
    traditional_criteria={
        "intensity": MovementIntensity.HIGH,
        "min_fluidity": 0.75
    }
)

# Generate comprehensive report
report = agent_api.generate_analysis_report(
    results,
    include_comparisons=True,
    include_recommendations=True
)
```

### 2. Real-time Exercise Form Checker
```python
# Start real-time analysis
agent_api.start_realtime_analysis(
    model=PoseModel.MEDIAPIPE_FULL,
    enable_skateformer=True
)

# Monitor form in real-time
while exercise_in_progress:
    metrics = agent_api.get_realtime_metrics()
    
    # Check form quality
    if metrics["fluidity"] < 0.6:
        send_feedback("Improve movement smoothness")
    
    if metrics["symmetry"] < 0.7:
        send_feedback("Balance left and right movements")
    
    time.sleep(0.1)  # 10Hz monitoring

# Stop and get session summary
agent_api.stop_realtime_analysis()
session_summary = agent_api.get_session_summary()
```

### 3. Movement Pattern Research Workflow
```python
# Large-scale analysis for research
research_videos = get_research_dataset()

# Batch process with comprehensive analysis
results = agent_api.batch_analyze(
    research_videos,
    model=PoseModel.YOLO_V11_L,  # High accuracy for research
    use_skateformer=True,
    include_keypoints=True,  # Full data for research
    parallel=True
)

# Statistical analysis
patterns = agent_api.extract_movement_patterns(
    results,
    pattern_types=["temporal", "spatial", "quality"],
    clustering_method="hierarchical"
)

# Generate research insights
insights = agent_api.generate_research_insights(
    patterns,
    include_visualizations=True,
    statistical_tests=True
)
```

## πŸ”§ Advanced Configuration & Customization

### Environment Variables

```bash
# Core configuration
export LABAN_DEFAULT_MODEL="mediapipe-full"
export LABAN_CACHE_DIR="/path/to/cache"
export LABAN_MAX_WORKERS=4

# Enhanced features
export LABAN_ENABLE_SKATEFORMER=true
export LABAN_ENABLE_WEBRTC=true
export LABAN_SKATEFORMER_MODEL_PATH="/path/to/skateformer"

# Performance tuning
export LABAN_GPU_ENABLED=true
export LABAN_BATCH_SIZE=8
export LABAN_REALTIME_FPS=30

# Video download configuration
export LABAN_YOUTUBE_QUALITY="720p"
export LABAN_MAX_DOWNLOAD_SIZE="500MB"
export LABAN_TEMP_DIR="/tmp/laban_downloads"
```

### Custom MCP Tools

```python
# Add custom MCP tool
from backend.mcp_server import server

@server.tool("custom_movement_analysis")
async def custom_analysis(
    video_path: str,
    custom_params: dict
) -> dict:
    """Custom movement analysis with specific parameters."""
    # Your custom implementation
    return results

# Register enhanced filters
@server.tool("filter_by_sport_type")
async def filter_by_sport(
    videos: list,
    sport_type: str
) -> dict:
    """Filter videos by detected sport type using SkateFormer."""
    # Implementation using SkateFormer sport classification
    return filtered_videos
```

### WebRTC Configuration

```python
# Custom WebRTC configuration
webrtc_config = {
    "video_constraints": {
        "width": 1280,
        "height": 720,
        "frameRate": 30
    },
    "processing_config": {
        "max_latency_ms": 100,
        "quality_adaptation": True,
        "model_switching": True
    }
}

agent_api.configure_webrtc(webrtc_config)
```

## 🀝 Contributing to Agent Features

### Adding New MCP Tools

1. Define tool in `backend/mcp_server.py`
2. Implement core logic in agent API
3. Add comprehensive documentation
4. Include usage examples
5. Write integration tests

### Extending Agent API

1. Add methods to `LabanAgentAPI` class
2. Ensure compatibility with existing workflows
3. Add structured output formats
4. Include error handling and validation
5. Update documentation

### Enhancing SkateFormer Integration

1. Extend action recognition types
2. Add custom movement quality metrics  
3. Implement temporal analysis features
4. Add visualization components
5. Validate with research datasets

## πŸ“š Resources & References

- [MCP Specification](https://github.com/anthropics/mcp)
- [SkateFormer Research Paper](https://kaist-viclab.github.io/SkateFormer_site/)
- [Gradio 5 Documentation](https://www.gradio.app/docs)
- [Unified Demo Application](demo/app.py)
- [Core Component Code](backend/gradio_labanmovementanalysis/)

## 🎯 Production Deployment

### Docker Deployment

```dockerfile
FROM python:3.9-slim

COPY . /app
WORKDIR /app

RUN pip install -r backend/requirements.txt
RUN pip install -r backend/requirements-mcp.txt

EXPOSE 7860 8080

CMD ["python", "-m", "backend.mcp_server"]
```

### Kubernetes Configuration

```yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: laban-mcp-server
spec:
  replicas: 3
  selector:
    matchLabels:
      app: laban-mcp
  template:
    metadata:
      labels:
        app: laban-mcp
    spec:
      containers:
      - name: mcp-server
        image: laban-movement-analysis:latest
        ports:
        - containerPort: 8080
        env:
        - name: LABAN_MAX_WORKERS
          value: "2"
        - name: LABAN_ENABLE_SKATEFORMER
          value: "true"
```

---

**πŸ€– Transform your AI assistant into a movement analysis expert with comprehensive MCP integration and agent-ready automation.**