import gradio as gr from app import demo as app import os _docs = {'LabanMovementAnalysis': {'description': 'Gradio component for video-based pose analysis with Laban Movement Analysis metrics.', 'members': {'__init__': {'default_model': {'type': 'str', 'default': '"mediapipe"', 'description': 'Default pose estimation model ("mediapipe", "movenet", "yolo")'}, 'enable_visualization': {'type': 'bool', 'default': 'True', 'description': 'Whether to generate visualization video by default'}, 'include_keypoints': {'type': 'bool', 'default': 'False', 'description': 'Whether to include raw keypoints in JSON output'}, 'enable_webrtc': {'type': 'bool', 'default': 'False', 'description': 'Whether to enable WebRTC real-time analysis'}, 'label': {'type': 'typing.Optional[str][str, None]', 'default': 'None', 'description': 'Component label'}, 'every': {'type': 'typing.Optional[float][float, None]', 'default': 'None', 'description': None}, 'show_label': {'type': 'typing.Optional[bool][bool, None]', 'default': 'None', 'description': None}, 'container': {'type': 'bool', 'default': 'True', 'description': None}, 'scale': {'type': 'typing.Optional[int][int, None]', 'default': 'None', 'description': None}, 'min_width': {'type': 'int', 'default': '160', 'description': None}, 'interactive': {'type': 'typing.Optional[bool][bool, None]', 'default': 'None', 'description': None}, 'visible': {'type': 'bool', 'default': 'True', 'description': None}, 'elem_id': {'type': 'typing.Optional[str][str, None]', 'default': 'None', 'description': None}, 'elem_classes': {'type': 'typing.Optional[typing.List[str]][\n typing.List[str][str], None\n]', 'default': 'None', 'description': None}, 'render': {'type': 'bool', 'default': 'True', 'description': None}}, 'postprocess': {'value': {'type': 'typing.Any', 'description': 'Analysis results'}}, 'preprocess': {'return': {'type': 'typing.Dict[str, typing.Any][str, typing.Any]', 'description': 'Processed data for analysis'}, 'value': None}}, 'events': {}}, '__meta__': {'additional_interfaces': {}, 'user_fn_refs': {'LabanMovementAnalysis': []}}} abs_path = os.path.join(os.path.dirname(__file__), "css.css") with gr.Blocks( css=abs_path, theme=gr.themes.Default( font_mono=[ gr.themes.GoogleFont("Inconsolata"), "monospace", ], ), ) as demo: gr.Markdown( """ # `gradio_labanmovementanalysis`
PyPI - Version
A Gradio 5 component for video movement analysis using Laban Movement Analysis (LMA) with MCP support for AI agents """, elem_classes=["md-custom"], header_links=True) app.render() gr.Markdown( """ ## Installation ```bash pip install gradio_labanmovementanalysis ``` ## Usage ```python # app.py ───────────────────────────────────────────────────────── \"\"\" Laban Movement Analysis – modernised Gradio Space Author: Csaba (BladeSzaSza) \"\"\" import gradio as gr import os # from backend.gradio_labanmovementanalysis import LabanMovementAnalysis from gradio_labanmovementanalysis import LabanMovementAnalysis # Import agent API if available # Initialize agent API if available agent_api = None try: from gradio_labanmovementanalysis.agent_api import ( LabanAgentAPI, PoseModel, MovementDirection, MovementIntensity ) agent_api = LabanAgentAPI() except Exception as e: print(f"Warning: Agent API not available: {e}") agent_api = None # Initialize components try: analyzer = LabanMovementAnalysis( enable_visualization=True ) print("✅ Core features initialized successfully") except Exception as e: print(f"Warning: Some features may not be available: {e}") analyzer = LabanMovementAnalysis() def process_video_enhanced(video_input, model, enable_viz, include_keypoints): \"\"\"Enhanced video processing with all new features.\"\"\" if not video_input: return {"error": "No video provided"}, None try: # Handle both file upload and URL input video_path = video_input.name if hasattr(video_input, 'name') else video_input json_result, viz_result = analyzer.process_video( video_path, model=model, enable_visualization=enable_viz, include_keypoints=include_keypoints ) return json_result, viz_result except Exception as e: error_result = {"error": str(e)} return error_result, None def process_video_standard(video : str, model : str, include_keypoints : bool) -> dict: \"\"\" Processes a video file using the specified pose estimation model and returns movement analysis results. Args: video (str): Path to the video file to be analyzed. model (str): The name of the pose estimation model to use (e.g., "mediapipe-full", "movenet-thunder", etc.). include_keypoints (bool): Whether to include raw keypoint data in the output. Returns: dict: - A dictionary containing the movement analysis results in JSON format, or an error message if processing fails. Notes: - Visualization is disabled in this standard processing function. - If the input video is None, both return values will be None. - If an error occurs during processing, the first return value will be a dictionary with an "error" key. \"\"\" if video is None: return None try: json_output, _ = analyzer.process_video( video, model=model, enable_visualization=False, include_keypoints=include_keypoints ) return json_output except (RuntimeError, ValueError, OSError) as e: return {"error": str(e)} # ── 4. Build UI ───────────────────────────────────────────────── def create_demo() -> gr.Blocks: with gr.Blocks( title="Laban Movement Analysis", theme='gstaff/sketch', fill_width=True, ) as demo: gr.api(process_video_standard, api_name="process_video") # ── Hero banner ── gr.Markdown( \"\"\" # 🎭 Laban Movement Analysis Pose estimation • AI action recognition • Movement Analysis \"\"\" ) with gr.Tabs(): # Tab 1: Standard Analysis with gr.Tab("🎬 Standard Analysis"): gr.Markdown(\"\"\" ### Upload a video file to analyze movement using traditional LMA metrics with pose estimation. \"\"\") # ── Workspace ── with gr.Row(equal_height=True): # Input column with gr.Column(scale=1, min_width=260): analyze_btn_enh = gr.Button("🚀 Analyze Movement", variant="primary", size="lg") video_in = gr.Video(label="Upload Video", sources=["upload"], format="mp4") # URL input option url_input_enh = gr.Textbox( label="Or Enter Video URL", placeholder="YouTube URL, Vimeo URL, or direct video URL", info="Leave file upload empty to use URL" ) gr.Markdown("**Model Selection**") model_sel = gr.Dropdown( choices=[ # MediaPipe variants "mediapipe-lite", "mediapipe-full", "mediapipe-heavy", # MoveNet variants "movenet-lightning", "movenet-thunder", # YOLO v8 variants "yolo-v8-n", "yolo-v8-s", "yolo-v8-m", "yolo-v8-l", "yolo-v8-x", # YOLO v11 variants "yolo-v11-n", "yolo-v11-s", "yolo-v11-m", "yolo-v11-l", "yolo-v11-x" ], value="mediapipe-full", label="Advanced Pose Models", info="15 model variants available" ) with gr.Accordion("Analysis Options", open=False): enable_viz = gr.Radio([("Yes", 1), ("No", 0)], value=1, label="Visualization") include_kp = gr.Radio([("Yes", 1), ("No", 0)], value=0, label="Raw Keypoints") gr.Examples( examples=[ ["examples/balette.mp4"], ["https://www.youtube.com/shorts/RX9kH2l3L8U"], ["https://vimeo.com/815392738"], ["https://vimeo.com/548964931"], ["https://videos.pexels.com/video-files/5319339/5319339-uhd_1440_2560_25fps.mp4"], ], inputs=url_input_enh, label="Examples" ) # Output column with gr.Column(scale=2, min_width=320): viz_out = gr.Video(label="Annotated Video", scale=1, height=400) with gr.Accordion("Raw JSON", open=True): json_out = gr.JSON(label="Movement Analysis", elem_classes=["json-output"]) # Wiring def process_enhanced_input(file_input, url_input, model, enable_viz, include_keypoints): \"\"\"Process either file upload or URL input.\"\"\" video_source = file_input if file_input else url_input return process_video_enhanced(video_source, model, enable_viz, include_keypoints) analyze_btn_enh.click( fn=process_enhanced_input, inputs=[video_in, url_input_enh, model_sel, enable_viz, include_kp], outputs=[json_out, viz_out], api_name="analyze_enhanced" ) # Footer with gr.Row(): gr.Markdown( \"\"\" **Built by Csaba Bolyós** [GitHub](https://github.com/bladeszasza) • [HF](https://huggingface.co/BladeSzaSza) \"\"\" ) return demo if __name__ == "__main__": demo = create_demo() demo.launch(server_name="0.0.0.0", share=True, server_port=int(os.getenv("PORT", 7860)), mcp_server=True) ``` """, elem_classes=["md-custom"], header_links=True) gr.Markdown(""" ## `LabanMovementAnalysis` ### Initialization """, elem_classes=["md-custom"], header_links=True) gr.ParamViewer(value=_docs["LabanMovementAnalysis"]["members"]["__init__"], linkify=[]) gr.Markdown(""" ### User function The impact on the users predict function varies depending on whether the component is used as an input or output for an event (or both). - When used as an Input, the component only impacts the input signature of the user function. - When used as an output, the component only impacts the return signature of the user function. The code snippet below is accurate in cases where the component is used as both an input and an output. - **As input:** Is passed, processed data for analysis. - **As output:** Should return, analysis results. ```python def predict( value: typing.Dict[str, typing.Any][str, typing.Any] ) -> typing.Any: return value ``` """, elem_classes=["md-custom", "LabanMovementAnalysis-user-fn"], header_links=True) demo.load(None, js=r"""function() { const refs = {}; const user_fn_refs = { LabanMovementAnalysis: [], }; requestAnimationFrame(() => { Object.entries(user_fn_refs).forEach(([key, refs]) => { if (refs.length > 0) { const el = document.querySelector(`.${key}-user-fn`); if (!el) return; refs.forEach(ref => { el.innerHTML = el.innerHTML.replace( new RegExp("\\b"+ref+"\\b", "g"), `${ref}` ); }) } }) Object.entries(refs).forEach(([key, refs]) => { if (refs.length > 0) { const el = document.querySelector(`.${key}`); if (!el) return; refs.forEach(ref => { el.innerHTML = el.innerHTML.replace( new RegExp("\\b"+ref+"\\b", "g"), `${ref}` ); }) } }) }) } """) demo.launch()