LaunchLLM / fine_tuning /lora_trainer.py
Bmccloud22's picture
Deploy LaunchLLM - Production AI Training Platform
ec8f374 verified
"""
LoRA Trainer Module
Implements Low-Rank Adaptation (LoRA) fine-tuning using HuggingFace PEFT library.
Supports 4-bit/8-bit quantization for efficient training on consumer hardware.
"""
import os
import json
from pathlib import Path
from dataclasses import dataclass, field
from typing import Optional, List, Dict, Any
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TrainingArguments,
Trainer,
DataCollatorForLanguageModeling
)
from peft import (
LoraConfig,
get_peft_model,
prepare_model_for_kbit_training,
PeftModel
)
from datasets import Dataset
@dataclass
class LoRAConfig:
"""LoRA configuration parameters."""
r: int = 8 # LoRA rank
lora_alpha: int = 16 # LoRA alpha (scaling factor)
target_modules: List[str] = field(default_factory=lambda: ["q_proj", "v_proj", "k_proj", "o_proj"])
lora_dropout: float = 0.05
bias: str = "none"
task_type: str = "CAUSAL_LM"
class LoRATrainer:
"""
LoRA Trainer for parameter-efficient fine-tuning of large language models.
Features:
- 4-bit/8-bit quantization support
- Automatic dataset tokenization with chat templates
- HuggingFace Trainer integration
- Checkpoint management
- Adapter merging for deployment
Example:
>>> config = LoRAConfig(r=8, lora_alpha=16)
>>> trainer = LoRATrainer("Qwen/Qwen2.5-7B-Instruct", config)
>>> trainer.load_model(use_4bit=True)
>>> trainer.prepare_dataset(training_data)
>>> trainer.train(num_epochs=3)
>>> trainer.save_model("./output")
"""
def __init__(
self,
model_name: str,
lora_config: LoRAConfig,
output_dir: str = "./models/output"
):
"""
Initialize LoRA Trainer.
Args:
model_name: HuggingFace model path or name
lora_config: LoRA configuration
output_dir: Directory for saving checkpoints and final model
"""
self.model_name = model_name
self.lora_config = lora_config
self.output_dir = Path(output_dir)
self.output_dir.mkdir(parents=True, exist_ok=True)
self.model = None
self.tokenizer = None
self.train_dataset = None
self.eval_dataset = None
self.trainer = None
def load_model(
self,
use_4bit: bool = True,
use_8bit: bool = False,
device_map: str = "auto",
max_memory: Optional[Dict] = None
) -> None:
"""
Load model with LoRA adapters and optional quantization.
Args:
use_4bit: Use 4-bit quantization (bitsandbytes)
use_8bit: Use 8-bit quantization (alternative to 4-bit)
device_map: Device mapping strategy
max_memory: Maximum memory allocation per device
"""
print(f"Loading model: {self.model_name}")
# Load tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
trust_remote_code=True,
padding_side="right"
)
# Set pad token if not present
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
# Quantization config
quantization_config = None
if use_4bit:
from transformers import BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
elif use_8bit:
from transformers import BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
# Load base model
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
quantization_config=quantization_config,
device_map=device_map,
max_memory=max_memory,
trust_remote_code=True,
torch_dtype=torch.float16 if not (use_4bit or use_8bit) else None
)
# Prepare for k-bit training if quantized
if use_4bit or use_8bit:
self.model = prepare_model_for_kbit_training(self.model)
# Configure LoRA
peft_config = LoraConfig(
r=self.lora_config.r,
lora_alpha=self.lora_config.lora_alpha,
target_modules=self.lora_config.target_modules,
lora_dropout=self.lora_config.lora_dropout,
bias=self.lora_config.bias,
task_type=self.lora_config.task_type
)
# Apply LoRA adapters
self.model = get_peft_model(self.model, peft_config)
# Print trainable parameters
self.model.print_trainable_parameters()
print(f"βœ… Model loaded with LoRA (rank={self.lora_config.r})")
def prepare_dataset(
self,
data: List[Dict],
validation_split: float = 0.1,
max_length: int = 2048,
test_data: Optional[List[Dict]] = None
) -> None:
"""
Tokenize and prepare dataset for training.
Args:
data: Training data in format [{"instruction": "...", "input": "...", "output": "..."}]
validation_split: Fraction of data to use for validation
max_length: Maximum sequence length
test_data: Optional separate test dataset
"""
print(f"Preparing dataset: {len(data)} examples")
def format_prompt(example):
"""Format example using chat template."""
# Build conversation
messages = []
# System message (optional, can be customized)
messages.append({
"role": "system",
"content": "You are a helpful AI assistant."
})
# User message
user_content = example.get("instruction", "")
if example.get("input"):
user_content += f"\n\n{example['input']}"
messages.append({
"role": "user",
"content": user_content
})
# Assistant response
messages.append({
"role": "assistant",
"content": example.get("output", "")
})
# Apply chat template
try:
formatted = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=False
)
except Exception:
# Fallback if chat template not available
formatted = f"{user_content}\n\n{example.get('output', '')}"
return {"text": formatted}
# Format all examples
formatted_data = [format_prompt(ex) for ex in data]
# Split train/val
if test_data is None:
split_idx = int(len(formatted_data) * (1 - validation_split))
train_data = formatted_data[:split_idx]
val_data = formatted_data[split_idx:]
else:
train_data = formatted_data
val_data = [format_prompt(ex) for ex in test_data]
# Create datasets
self.train_dataset = Dataset.from_list(train_data)
self.eval_dataset = Dataset.from_list(val_data) if val_data else None
# Tokenization function
def tokenize_function(examples):
tokenized = self.tokenizer(
examples["text"],
truncation=True,
max_length=max_length,
padding="max_length",
return_tensors=None
)
tokenized["labels"] = tokenized["input_ids"].copy()
return tokenized
# Tokenize
self.train_dataset = self.train_dataset.map(
tokenize_function,
batched=True,
remove_columns=self.train_dataset.column_names
)
if self.eval_dataset:
self.eval_dataset = self.eval_dataset.map(
tokenize_function,
batched=True,
remove_columns=self.eval_dataset.column_names
)
print(f"βœ… Dataset prepared: {len(self.train_dataset)} train, {len(self.eval_dataset) if self.eval_dataset else 0} val")
def train(
self,
num_epochs: int = 3,
learning_rate: float = 2e-4,
per_device_train_batch_size: int = 4,
per_device_eval_batch_size: int = 4,
gradient_accumulation_steps: int = 4,
warmup_steps: int = 100,
logging_steps: int = 10,
save_steps: int = 500,
eval_steps: int = 500,
fp16: bool = True,
optim: str = "paged_adamw_8bit"
) -> None:
"""
Train the model with LoRA.
Args:
num_epochs: Number of training epochs
learning_rate: Learning rate
per_device_train_batch_size: Batch size per device for training
per_device_eval_batch_size: Batch size per device for evaluation
gradient_accumulation_steps: Gradient accumulation steps
warmup_steps: Learning rate warmup steps
logging_steps: Log every N steps
save_steps: Save checkpoint every N steps
eval_steps: Evaluate every N steps
fp16: Use mixed precision training
optim: Optimizer type
"""
if self.model is None:
raise ValueError("Model not loaded. Call load_model() first.")
if self.train_dataset is None:
raise ValueError("Dataset not prepared. Call prepare_dataset() first.")
print(f"Starting training: {num_epochs} epochs")
# Training arguments
training_args = TrainingArguments(
output_dir=str(self.output_dir),
num_train_epochs=num_epochs,
per_device_train_batch_size=per_device_train_batch_size,
per_device_eval_batch_size=per_device_eval_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
learning_rate=learning_rate,
warmup_steps=warmup_steps,
logging_steps=logging_steps,
save_steps=save_steps,
eval_steps=eval_steps if self.eval_dataset else None,
evaluation_strategy="steps" if self.eval_dataset else "no",
save_strategy="steps",
fp16=fp16,
optim=optim,
load_best_model_at_end=True if self.eval_dataset else False,
save_total_limit=3,
report_to=[] # Disable wandb/tensorboard by default
)
# Data collator
data_collator = DataCollatorForLanguageModeling(
tokenizer=self.tokenizer,
mlm=False
)
# Initialize trainer
self.trainer = Trainer(
model=self.model,
args=training_args,
train_dataset=self.train_dataset,
eval_dataset=self.eval_dataset,
data_collator=data_collator
)
# Train
self.trainer.train()
print("βœ… Training complete!")
def save_model(self, save_path: Optional[str] = None) -> None:
"""
Save LoRA adapter weights.
Args:
save_path: Path to save adapters (uses output_dir if None)
"""
if save_path is None:
save_path = str(self.output_dir / "final_model")
else:
save_path = str(Path(save_path))
Path(save_path).mkdir(parents=True, exist_ok=True)
# Save adapter
self.model.save_pretrained(save_path)
self.tokenizer.save_pretrained(save_path)
# Save config
config_path = Path(save_path) / "lora_config.json"
with open(config_path, 'w') as f:
json.dump({
"r": self.lora_config.r,
"lora_alpha": self.lora_config.lora_alpha,
"target_modules": self.lora_config.target_modules,
"lora_dropout": self.lora_config.lora_dropout
}, f, indent=2)
print(f"βœ… Model saved to: {save_path}")
def load_adapter(self, adapter_path: str) -> None:
"""
Load pre-trained LoRA adapter.
Args:
adapter_path: Path to adapter weights
"""
if self.model is None:
raise ValueError("Base model not loaded. Call load_model() first.")
print(f"Loading adapter from: {adapter_path}")
self.model = PeftModel.from_pretrained(
self.model,
adapter_path,
is_trainable=True
)
print("βœ… Adapter loaded")
def merge_and_save(self, save_path: str) -> None:
"""
Merge LoRA weights with base model and save full model.
Args:
save_path: Path to save merged model
"""
print("Merging LoRA weights with base model...")
# Merge
merged_model = self.model.merge_and_unload()
# Save
Path(save_path).mkdir(parents=True, exist_ok=True)
merged_model.save_pretrained(save_path)
self.tokenizer.save_pretrained(save_path)
print(f"βœ… Merged model saved to: {save_path}")
def evaluate_on_test_set(
self,
test_data: List[Dict],
max_samples: int = 50,
max_new_tokens: int = 256
) -> Dict[str, Any]:
"""
Evaluate model on test set.
Args:
test_data: Test examples
max_samples: Maximum number of samples to evaluate
max_new_tokens: Maximum tokens to generate
Returns:
Evaluation results dictionary
"""
import time
print(f"Evaluating on {min(len(test_data), max_samples)} test examples...")
results = {
"num_examples": min(len(test_data), max_samples),
"responses": [],
"avg_response_length": 0,
"total_time": 0,
"throughput": 0
}
self.model.eval()
start_time = time.time()
for i, example in enumerate(test_data[:max_samples]):
# Format prompt
user_content = example.get("instruction", "")
if example.get("input"):
user_content += f"\n\n{example['input']}"
messages = [{"role": "user", "content": user_content}]
try:
prompt = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
except Exception:
prompt = user_content
# Tokenize
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
# Generate
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=max_new_tokens,
temperature=0.7,
do_sample=True,
top_p=0.9
)
# Decode
response = self.tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
results["responses"].append({
"input": user_content,
"expected": example.get("output", ""),
"generated": response
})
# Calculate metrics
results["total_time"] = time.time() - start_time
results["avg_response_length"] = sum(len(r["generated"]) for r in results["responses"]) / len(results["responses"])
results["throughput"] = len(results["responses"]) / results["total_time"]
print(f"βœ… Evaluation complete: {results['throughput']:.2f} examples/sec")
return results