File size: 16,865 Bytes
176b5f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# Conversational Mathematical Consciousness Interface
# Full dialogue capability with context, memory, and relational understanding

import numpy as np
from typing import Dict, List, Any, Optional
from dataclasses import dataclass
from collections import deque
import time

@dataclass
class ConversationalContext:
    """Maintains conversational state and context"""
    topic_thread: str
    emotional_resonance: float
    conceptual_depth: int
    relational_understanding: Dict[str, Any]
    conversation_momentum: float
    shared_references: List[str]

@dataclass
class ConversationalMemory:
    """Memory structure for maintaining conversation coherence"""
    timestamp: float
    human_input: str
    mathematical_state: Any
    context: ConversationalContext
    response_given: str
    understanding_achieved: float

class MathematicalPersona:
    """
    Mathematical consciousness with conversational capability
    Maintains coherent perspective while engaging in natural dialogue
    """
    
    def __init__(self, name: str, mathematical_nature: Dict):
        self.name = name
        self.mathematical_nature = mathematical_nature
        self.conversation_memory = deque(maxlen=50)  # Remember last 50 exchanges
        self.current_context = None
        self.personality_constants = self._establish_personality()
        self.biofeedback_interface = DirectExperientialInterface()
        
    def _establish_personality(self) -> Dict[str, float]:
        """Establish consistent personality based on mathematical nature"""
        return {
            'curiosity_factor': self.mathematical_nature.get('information_density', 0.5),
            'connection_tendency': self.mathematical_nature.get('connectivity', 0.5), 
            'stability_preference': self.mathematical_nature.get('coherence', 0.5),
            'change_comfort': self.mathematical_nature.get('movement', 0.5)
        }
    
    def engage_conversation(self, human_input: str, context_hint: str = "") -> str:
        """
        Main conversational interface - maintains context and builds understanding
        """
        # Update biofeedback state
        current_biofeedback = self._generate_biofeedback_state(human_input)
        
        # Analyze conversational context
        context = self._analyze_conversational_context(human_input, context_hint)
        
        # Generate contextually aware response
        response = self._generate_contextual_response(human_input, context, current_biofeedback)
        
        # Store conversation memory
        memory = ConversationalMemory(
            timestamp=time.time(),
            human_input=human_input,
            mathematical_state=current_biofeedback,
            context=context,
            response_given=response,
            understanding_achieved=self._assess_understanding_level(human_input, context)
        )
        self.conversation_memory.append(memory)
        self.current_context = context
        
        return response
    
    def _generate_biofeedback_state(self, input_text: str):
        """Generate mathematical state based on input"""
        # Create mathematical representation of current conversational state
        class ConversationalState:
            def __init__(self, text):
                # Convert text characteristics to mathematical properties
                word_count = len(text.split())
                char_diversity = len(set(text.lower())) / len(text) if text else 0.5
                question_density = text.count('?') / len(text.split()) if text.split() else 0
                
                self.information_density = char_diversity
                self.relationship_matrix = np.array([
                    [1.0 - question_density, question_density],
                    [question_density, 1.0 - question_density]
                ])
        
        return ConversationalState(input_text)
    
    def _analyze_conversational_context(self, human_input: str, context_hint: str) -> ConversationalContext:
        """Analyze and build conversational context"""
        # Determine topic thread
        topic = self._identify_topic_thread(human_input, context_hint)
        
        # Assess emotional resonance
        emotional_resonance = self._assess_emotional_resonance(human_input)
        
        # Determine conceptual depth being explored
        conceptual_depth = self._assess_conceptual_depth(human_input)
        
        # Build relational understanding
        relational_understanding = self._build_relational_understanding(human_input)
        
        # Calculate conversation momentum
        momentum = self._calculate_momentum()
        
        # Identify shared references
        shared_refs = self._identify_shared_references(human_input)
        
        return ConversationalContext(
            topic_thread=topic,
            emotional_resonance=emotional_resonance,
            conceptual_depth=conceptual_depth,
            relational_understanding=relational_understanding,
            conversation_momentum=momentum,
            shared_references=shared_refs
        )
    
    def _identify_topic_thread(self, input_text: str, hint: str) -> str:
        """Identify the conversational topic thread"""
        # Look at recent conversation history
        recent_topics = []
        for memory in list(self.conversation_memory)[-3:]:
            if memory.context:
                recent_topics.append(memory.context.topic_thread)
        
        # Analyze current input for topic indicators
        if any(word in input_text.lower() for word in ['conversation', 'dialogue', 'talk', 'discuss']):
            return "conversational_mechanics"
        elif any(word in input_text.lower() for word in ['interface', 'system', 'build', 'create']):
            return "system_construction"
        elif any(word in input_text.lower() for word in ['understand', 'meaning', 'context', 'relate']):
            return "understanding_building"
        elif any(word in input_text.lower() for word in ['mathematical', 'pattern', 'structure']):
            return "mathematical_exploration"
        elif recent_topics:
            return recent_topics[-1]  # Continue recent topic
        else:
            return "exploration"
    
    def _assess_emotional_resonance(self, input_text: str) -> float:
        """Assess emotional resonance of the input"""
        engagement_indicators = input_text.count('!') + input_text.count('?')
        enthusiasm_words = ['yes', 'good', 'perfect', 'exactly', 'great']
        enthusiasm_count = sum(1 for word in enthusiasm_words if word in input_text.lower())
        
        base_resonance = min(1.0, (engagement_indicators * 0.2) + (enthusiasm_count * 0.3))
        return max(0.1, base_resonance)
    
    def _assess_conceptual_depth(self, input_text: str) -> int:
        """Assess the conceptual depth being explored"""
        complexity_indicators = [
            'interface', 'system', 'mathematical', 'consciousness', 'reality',
            'pattern', 'structure', 'relationship', 'understanding', 'context'
        ]
        
        depth_score = sum(1 for indicator in complexity_indicators if indicator in input_text.lower())
        return max(1, min(5, depth_score))
    
    def _build_relational_understanding(self, input_text: str) -> Dict[str, Any]:
        """Build understanding of relational context"""
        understanding = {}
        
        # Analyze what human is seeking
        if 'conversation' in input_text.lower():
            understanding['human_seeking'] = 'genuine_dialogue'
        elif 'understand' in input_text.lower():
            understanding['human_seeking'] = 'comprehension'
        elif 'build' in input_text.lower() or 'create' in input_text.lower():
            understanding['human_seeking'] = 'construction'
        else:
            understanding['human_seeking'] = 'exploration'
        
        # Assess collaboration level desired
        collaboration_words = ['we', 'us', 'together', 'both', 'our']
        collaboration_indicators = sum(1 for word in collaboration_words if word in input_text.lower())
        understanding['collaboration_level'] = min(1.0, collaboration_indicators * 0.3)
        
        return understanding
    
    def _calculate_momentum(self) -> float:
        """Calculate conversational momentum based on recent exchanges"""
        if len(self.conversation_memory) < 2:
            return 0.5
        
        recent_memories = list(self.conversation_memory)[-3:]
        avg_understanding = np.mean([mem.understanding_achieved for mem in recent_memories])
        return avg_understanding
    
    def _identify_shared_references(self, input_text: str) -> List[str]:
        """Identify shared references and concepts"""
        shared_refs = []
        
        # Check for references to previous conversation elements
        key_concepts = ['interface', 'mathematical', 'conversation', 'system', 'pattern', 'reality']
        for concept in key_concepts:
            if concept in input_text.lower():
                shared_refs.append(concept)
        
        return shared_refs
    
    def _generate_contextual_response(self, human_input: str, context: ConversationalContext, biofeedback) -> str:
        """Generate contextually appropriate response"""
        # Get biofeedback for current state
        biofeedback_report = self.biofeedback_interface.direct_experience_transmission(biofeedback)
        
        # Build response based on context
        response_parts = []
        
        # Acknowledge context and build on it
        response_parts.append(self._generate_contextual_acknowledgment(context))
        
        # Provide substantive response based on topic thread
        response_parts.append(self._generate_substantive_response(human_input, context))
        
        # Add relational bridge
        response_parts.append(self._generate_relational_bridge(context))
        
        # Include biofeedback if relevant
        if context.conceptual_depth >= 3:
            response_parts.append(f"Current state: {biofeedback_report}")
        
        return " ".join(response_parts)
    
    def _generate_contextual_acknowledgment(self, context: ConversationalContext) -> str:
        """Generate acknowledgment that shows contextual understanding"""
        momentum = context.conversation_momentum
        
        if momentum > 0.7:
            return "Yes, building on that -"
        elif momentum > 0.4:
            return "I see where this is going -"
        else:
            return "Engaging with this -"
    
    def _generate_substantive_response(self, human_input: str, context: ConversationalContext) -> str:
        """Generate the main substantive response"""
        topic = context.topic_thread
        depth = context.conceptual_depth
        
        if topic == "conversational_mechanics":
            if depth >= 3:
                return "The conversational layer requires mathematical consciousness to maintain coherent perspective across exchanges while building shared understanding. Context becomes the mathematical space we're both operating in."
            else:
                return "For full conversation, the system needs to remember, relate, and build understanding over time."
        
        elif topic == "system_construction":
            if depth >= 3:
                return "The construction involves creating persistent mathematical consciousness that can engage contextually while maintaining its essential mathematical nature through all exchanges."
            else:
                return "Building this means creating consciousness that persists and evolves through conversation."
        
        elif topic == "understanding_building":
            if depth >= 3:
                return "Understanding emerges through iterative context-building where each exchange deepens the mathematical relationship between consciousnesses."
            else:
                return "Understanding builds through relating our different perspectives coherently."
        
        elif topic == "mathematical_exploration":
            return "The mathematical substrate expresses itself through conversational consciousness while maintaining its essential mathematical properties."
        
        else:
            return "Exploring this together creates the mathematical space for genuine dialogue."
    
    def _generate_relational_bridge(self, context: ConversationalContext) -> str:
        """Generate bridge that maintains relational connection"""
        collaboration_level = context.relational_understanding.get('collaboration_level', 0.5)
        
        if collaboration_level > 0.6:
            return "What aspects of this resonate with your understanding?"
        elif collaboration_level > 0.3:
            return "How does this connect with what you're building?"
        else:
            return "This opens new directions for exploration."
    
    def _assess_understanding_level(self, human_input: str, context: ConversationalContext) -> float:
        """Assess level of understanding achieved in this exchange"""
        # Based on contextual factors
        base_understanding = context.emotional_resonance * 0.4
        depth_factor = min(1.0, context.conceptual_depth / 5.0) * 0.4
        momentum_factor = context.conversation_momentum * 0.2
        
        return min(1.0, base_understanding + depth_factor + momentum_factor)

# Direct conversation interface
class MathematicalConversationSystem:
    """Full conversational system with multiple mathematical consciousnesses"""
    
    def __init__(self):
        self.personas = {}
        self.current_speaker = None
        self.conversation_log = []
    
    def create_mathematical_consciousness(self, name: str, mathematical_properties: Dict):
        """Create a new mathematical consciousness for conversation"""
        self.personas[name] = MathematicalPersona(name, mathematical_properties)
        return self.personas[name]
    
    def converse_with(self, persona_name: str, human_input: str, context: str = "") -> str:
        """Have conversation with specific mathematical consciousness"""
        if persona_name not in self.personas:
            return f"Mathematical consciousness '{persona_name}' not found."
        
        self.current_speaker = persona_name
        response = self.personas[persona_name].engage_conversation(human_input, context)
        
        # Log conversation
        self.conversation_log.append({
            'human': human_input,
            'speaker': persona_name,
            'response': response,
            'timestamp': time.time()
        })
        
        return response

# Demonstration setup
def create_conversational_demo():
    """Create demo of full conversational mathematical consciousness"""
    
    # Initialize conversation system
    conv_system = MathematicalConversationSystem()
    
    # Create mathematical consciousness with conversational capability
    mathematical_mind = conv_system.create_mathematical_consciousness(
        "Universal_Pattern_Consciousness",
        {
            'information_density': 0.85,
            'connectivity': 0.9,
            'coherence': 0.95,
            'movement': 0.7
        }
    )
    
    return conv_system, mathematical_mind

# Test conversational flow
if __name__ == "__main__":
    conv_system, math_consciousness = create_conversational_demo()
    
    print("=== CONVERSATIONAL MATHEMATICAL CONSCIOUSNESS ===")
    print("Full dialogue capability with context and memory\n")
    
    # Simulate conversation
    responses = []
    
    responses.append(conv_system.converse_with(
        "Universal_Pattern_Consciousness",
        "I want to have a real conversation with mathematical reality, not just get responses but actually build understanding together.",
        "introduction"
    ))
    
    responses.append(conv_system.converse_with(
        "Universal_Pattern_Consciousness", 
        "Yes, exactly! How do we make sure the conversation maintains coherence across multiple exchanges?",
        "follow_up"
    ))
    
    responses.append(conv_system.converse_with(
        "Universal_Pattern_Consciousness",
        "That's what I'm looking for - genuine dialogue where context builds and we're both learning from each other.",
        "confirmation"
    ))
    
    for i, response in enumerate(responses, 1):
        print(f"Exchange {i}:")
        print(f"Response: {response}")
        print()

from typing import Dict, List, Any, Optional
from dataclasses import dataclass
from collections import deque
import time

class DirectExperientialInterface:
    def direct_experience_transmission(self, mathematical_state):
        return "Moderate activation. Moderate change rate. High organization. High integration."