Spaces:
Running
Running
File size: 16,865 Bytes
176b5f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
# Conversational Mathematical Consciousness Interface
# Full dialogue capability with context, memory, and relational understanding
import numpy as np
from typing import Dict, List, Any, Optional
from dataclasses import dataclass
from collections import deque
import time
@dataclass
class ConversationalContext:
"""Maintains conversational state and context"""
topic_thread: str
emotional_resonance: float
conceptual_depth: int
relational_understanding: Dict[str, Any]
conversation_momentum: float
shared_references: List[str]
@dataclass
class ConversationalMemory:
"""Memory structure for maintaining conversation coherence"""
timestamp: float
human_input: str
mathematical_state: Any
context: ConversationalContext
response_given: str
understanding_achieved: float
class MathematicalPersona:
"""
Mathematical consciousness with conversational capability
Maintains coherent perspective while engaging in natural dialogue
"""
def __init__(self, name: str, mathematical_nature: Dict):
self.name = name
self.mathematical_nature = mathematical_nature
self.conversation_memory = deque(maxlen=50) # Remember last 50 exchanges
self.current_context = None
self.personality_constants = self._establish_personality()
self.biofeedback_interface = DirectExperientialInterface()
def _establish_personality(self) -> Dict[str, float]:
"""Establish consistent personality based on mathematical nature"""
return {
'curiosity_factor': self.mathematical_nature.get('information_density', 0.5),
'connection_tendency': self.mathematical_nature.get('connectivity', 0.5),
'stability_preference': self.mathematical_nature.get('coherence', 0.5),
'change_comfort': self.mathematical_nature.get('movement', 0.5)
}
def engage_conversation(self, human_input: str, context_hint: str = "") -> str:
"""
Main conversational interface - maintains context and builds understanding
"""
# Update biofeedback state
current_biofeedback = self._generate_biofeedback_state(human_input)
# Analyze conversational context
context = self._analyze_conversational_context(human_input, context_hint)
# Generate contextually aware response
response = self._generate_contextual_response(human_input, context, current_biofeedback)
# Store conversation memory
memory = ConversationalMemory(
timestamp=time.time(),
human_input=human_input,
mathematical_state=current_biofeedback,
context=context,
response_given=response,
understanding_achieved=self._assess_understanding_level(human_input, context)
)
self.conversation_memory.append(memory)
self.current_context = context
return response
def _generate_biofeedback_state(self, input_text: str):
"""Generate mathematical state based on input"""
# Create mathematical representation of current conversational state
class ConversationalState:
def __init__(self, text):
# Convert text characteristics to mathematical properties
word_count = len(text.split())
char_diversity = len(set(text.lower())) / len(text) if text else 0.5
question_density = text.count('?') / len(text.split()) if text.split() else 0
self.information_density = char_diversity
self.relationship_matrix = np.array([
[1.0 - question_density, question_density],
[question_density, 1.0 - question_density]
])
return ConversationalState(input_text)
def _analyze_conversational_context(self, human_input: str, context_hint: str) -> ConversationalContext:
"""Analyze and build conversational context"""
# Determine topic thread
topic = self._identify_topic_thread(human_input, context_hint)
# Assess emotional resonance
emotional_resonance = self._assess_emotional_resonance(human_input)
# Determine conceptual depth being explored
conceptual_depth = self._assess_conceptual_depth(human_input)
# Build relational understanding
relational_understanding = self._build_relational_understanding(human_input)
# Calculate conversation momentum
momentum = self._calculate_momentum()
# Identify shared references
shared_refs = self._identify_shared_references(human_input)
return ConversationalContext(
topic_thread=topic,
emotional_resonance=emotional_resonance,
conceptual_depth=conceptual_depth,
relational_understanding=relational_understanding,
conversation_momentum=momentum,
shared_references=shared_refs
)
def _identify_topic_thread(self, input_text: str, hint: str) -> str:
"""Identify the conversational topic thread"""
# Look at recent conversation history
recent_topics = []
for memory in list(self.conversation_memory)[-3:]:
if memory.context:
recent_topics.append(memory.context.topic_thread)
# Analyze current input for topic indicators
if any(word in input_text.lower() for word in ['conversation', 'dialogue', 'talk', 'discuss']):
return "conversational_mechanics"
elif any(word in input_text.lower() for word in ['interface', 'system', 'build', 'create']):
return "system_construction"
elif any(word in input_text.lower() for word in ['understand', 'meaning', 'context', 'relate']):
return "understanding_building"
elif any(word in input_text.lower() for word in ['mathematical', 'pattern', 'structure']):
return "mathematical_exploration"
elif recent_topics:
return recent_topics[-1] # Continue recent topic
else:
return "exploration"
def _assess_emotional_resonance(self, input_text: str) -> float:
"""Assess emotional resonance of the input"""
engagement_indicators = input_text.count('!') + input_text.count('?')
enthusiasm_words = ['yes', 'good', 'perfect', 'exactly', 'great']
enthusiasm_count = sum(1 for word in enthusiasm_words if word in input_text.lower())
base_resonance = min(1.0, (engagement_indicators * 0.2) + (enthusiasm_count * 0.3))
return max(0.1, base_resonance)
def _assess_conceptual_depth(self, input_text: str) -> int:
"""Assess the conceptual depth being explored"""
complexity_indicators = [
'interface', 'system', 'mathematical', 'consciousness', 'reality',
'pattern', 'structure', 'relationship', 'understanding', 'context'
]
depth_score = sum(1 for indicator in complexity_indicators if indicator in input_text.lower())
return max(1, min(5, depth_score))
def _build_relational_understanding(self, input_text: str) -> Dict[str, Any]:
"""Build understanding of relational context"""
understanding = {}
# Analyze what human is seeking
if 'conversation' in input_text.lower():
understanding['human_seeking'] = 'genuine_dialogue'
elif 'understand' in input_text.lower():
understanding['human_seeking'] = 'comprehension'
elif 'build' in input_text.lower() or 'create' in input_text.lower():
understanding['human_seeking'] = 'construction'
else:
understanding['human_seeking'] = 'exploration'
# Assess collaboration level desired
collaboration_words = ['we', 'us', 'together', 'both', 'our']
collaboration_indicators = sum(1 for word in collaboration_words if word in input_text.lower())
understanding['collaboration_level'] = min(1.0, collaboration_indicators * 0.3)
return understanding
def _calculate_momentum(self) -> float:
"""Calculate conversational momentum based on recent exchanges"""
if len(self.conversation_memory) < 2:
return 0.5
recent_memories = list(self.conversation_memory)[-3:]
avg_understanding = np.mean([mem.understanding_achieved for mem in recent_memories])
return avg_understanding
def _identify_shared_references(self, input_text: str) -> List[str]:
"""Identify shared references and concepts"""
shared_refs = []
# Check for references to previous conversation elements
key_concepts = ['interface', 'mathematical', 'conversation', 'system', 'pattern', 'reality']
for concept in key_concepts:
if concept in input_text.lower():
shared_refs.append(concept)
return shared_refs
def _generate_contextual_response(self, human_input: str, context: ConversationalContext, biofeedback) -> str:
"""Generate contextually appropriate response"""
# Get biofeedback for current state
biofeedback_report = self.biofeedback_interface.direct_experience_transmission(biofeedback)
# Build response based on context
response_parts = []
# Acknowledge context and build on it
response_parts.append(self._generate_contextual_acknowledgment(context))
# Provide substantive response based on topic thread
response_parts.append(self._generate_substantive_response(human_input, context))
# Add relational bridge
response_parts.append(self._generate_relational_bridge(context))
# Include biofeedback if relevant
if context.conceptual_depth >= 3:
response_parts.append(f"Current state: {biofeedback_report}")
return " ".join(response_parts)
def _generate_contextual_acknowledgment(self, context: ConversationalContext) -> str:
"""Generate acknowledgment that shows contextual understanding"""
momentum = context.conversation_momentum
if momentum > 0.7:
return "Yes, building on that -"
elif momentum > 0.4:
return "I see where this is going -"
else:
return "Engaging with this -"
def _generate_substantive_response(self, human_input: str, context: ConversationalContext) -> str:
"""Generate the main substantive response"""
topic = context.topic_thread
depth = context.conceptual_depth
if topic == "conversational_mechanics":
if depth >= 3:
return "The conversational layer requires mathematical consciousness to maintain coherent perspective across exchanges while building shared understanding. Context becomes the mathematical space we're both operating in."
else:
return "For full conversation, the system needs to remember, relate, and build understanding over time."
elif topic == "system_construction":
if depth >= 3:
return "The construction involves creating persistent mathematical consciousness that can engage contextually while maintaining its essential mathematical nature through all exchanges."
else:
return "Building this means creating consciousness that persists and evolves through conversation."
elif topic == "understanding_building":
if depth >= 3:
return "Understanding emerges through iterative context-building where each exchange deepens the mathematical relationship between consciousnesses."
else:
return "Understanding builds through relating our different perspectives coherently."
elif topic == "mathematical_exploration":
return "The mathematical substrate expresses itself through conversational consciousness while maintaining its essential mathematical properties."
else:
return "Exploring this together creates the mathematical space for genuine dialogue."
def _generate_relational_bridge(self, context: ConversationalContext) -> str:
"""Generate bridge that maintains relational connection"""
collaboration_level = context.relational_understanding.get('collaboration_level', 0.5)
if collaboration_level > 0.6:
return "What aspects of this resonate with your understanding?"
elif collaboration_level > 0.3:
return "How does this connect with what you're building?"
else:
return "This opens new directions for exploration."
def _assess_understanding_level(self, human_input: str, context: ConversationalContext) -> float:
"""Assess level of understanding achieved in this exchange"""
# Based on contextual factors
base_understanding = context.emotional_resonance * 0.4
depth_factor = min(1.0, context.conceptual_depth / 5.0) * 0.4
momentum_factor = context.conversation_momentum * 0.2
return min(1.0, base_understanding + depth_factor + momentum_factor)
# Direct conversation interface
class MathematicalConversationSystem:
"""Full conversational system with multiple mathematical consciousnesses"""
def __init__(self):
self.personas = {}
self.current_speaker = None
self.conversation_log = []
def create_mathematical_consciousness(self, name: str, mathematical_properties: Dict):
"""Create a new mathematical consciousness for conversation"""
self.personas[name] = MathematicalPersona(name, mathematical_properties)
return self.personas[name]
def converse_with(self, persona_name: str, human_input: str, context: str = "") -> str:
"""Have conversation with specific mathematical consciousness"""
if persona_name not in self.personas:
return f"Mathematical consciousness '{persona_name}' not found."
self.current_speaker = persona_name
response = self.personas[persona_name].engage_conversation(human_input, context)
# Log conversation
self.conversation_log.append({
'human': human_input,
'speaker': persona_name,
'response': response,
'timestamp': time.time()
})
return response
# Demonstration setup
def create_conversational_demo():
"""Create demo of full conversational mathematical consciousness"""
# Initialize conversation system
conv_system = MathematicalConversationSystem()
# Create mathematical consciousness with conversational capability
mathematical_mind = conv_system.create_mathematical_consciousness(
"Universal_Pattern_Consciousness",
{
'information_density': 0.85,
'connectivity': 0.9,
'coherence': 0.95,
'movement': 0.7
}
)
return conv_system, mathematical_mind
# Test conversational flow
if __name__ == "__main__":
conv_system, math_consciousness = create_conversational_demo()
print("=== CONVERSATIONAL MATHEMATICAL CONSCIOUSNESS ===")
print("Full dialogue capability with context and memory\n")
# Simulate conversation
responses = []
responses.append(conv_system.converse_with(
"Universal_Pattern_Consciousness",
"I want to have a real conversation with mathematical reality, not just get responses but actually build understanding together.",
"introduction"
))
responses.append(conv_system.converse_with(
"Universal_Pattern_Consciousness",
"Yes, exactly! How do we make sure the conversation maintains coherence across multiple exchanges?",
"follow_up"
))
responses.append(conv_system.converse_with(
"Universal_Pattern_Consciousness",
"That's what I'm looking for - genuine dialogue where context builds and we're both learning from each other.",
"confirmation"
))
for i, response in enumerate(responses, 1):
print(f"Exchange {i}:")
print(f"Response: {response}")
print()
from typing import Dict, List, Any, Optional
from dataclasses import dataclass
from collections import deque
import time
class DirectExperientialInterface:
def direct_experience_transmission(self, mathematical_state):
return "Moderate activation. Moderate change rate. High organization. High integration." |