Spaces:
Sleeping
Sleeping
File size: 26,364 Bytes
ac34f7e ea9526a a7e82fd 23ade3d ac34f7e 23ade3d ac34f7e 23ade3d ac34f7e 23ade3d ac34f7e 23ade3d ac34f7e 23ade3d ac34f7e 23ade3d ac34f7e 23ade3d ac34f7e ea9526a ac34f7e 23ade3d ac34f7e 23ade3d ea9526a 56a3af7 221378f dd2e8c7 ea9526a dd2e8c7 fd62378 dd2e8c7 23ade3d dd2e8c7 23ade3d dd2e8c7 23ade3d ac34f7e ea9526a dd2e8c7 ac34f7e dd2e8c7 ac34f7e dd2e8c7 05c6d11 fb2681b 23ade3d fb2681b 23ade3d fb2681b 23ade3d ac34f7e 23ade3d ac34f7e 9e5166e 1f5f42a 9e5166e ac34f7e 9e5166e 23ade3d 9e5166e 23ade3d 9e5166e ea9526a 9e5166e 172044d 9e5166e ea9526a 9e5166e ac34f7e ea9526a ac34f7e 23ade3d ac34f7e ea9526a ac34f7e ea9526a ac34f7e ea9526a ac34f7e ea9526a ac34f7e ea9526a 23ade3d ea9526a 49afafc ea9526a b85b02b ea9526a 23ade3d 172044d ea9526a cc9e644 ea9526a dd2e8c7 ea9526a dd2e8c7 a3c84cd dd2e8c7 c279d1c ea9526a dd2e8c7 ea9526a dd2e8c7 ea9526a dd2e8c7 ea9526a dd2e8c7 ea9526a 172044d ea9526a 172044d ea9526a 172044d ea9526a 172044d 5d41b09 ea9526a 172044d 5d41b09 ea9526a 172044d 5d41b09 ea9526a 172044d ea9526a ac34f7e ea9526a ac34f7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 |
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.14.2
# kernelspec:
# display_name: Python [conda env:bbytes] *
# language: python
# name: conda-env-bbytes-py
# ---
# +
import csv
import pandas as pd
from datetime import datetime, timedelta
import numpy as np
import datetime as dt
import matplotlib.pyplot as plt
from pathlib import Path
import time
import plotly.graph_objects as go
import plotly.io as pio
from PIL import Image
import streamlit as st
import plotly.express as px
import altair as alt
import dateutil.parser
from matplotlib.colors import LinearSegmentedColormap
# +
class color:
PURPLE = '\033[95m'
CYAN = '\033[96m'
DARKCYAN = '\033[36m'
BLUE = '\033[94m'
GREEN = '\033[92m'
YELLOW = '\033[93m'
RED = '\033[91m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
END = '\033[0m'
def conditional_formatter(value):
return "${:.2f}".format(value) if not (abs(value) < 1.00) else "${:.5f}".format(value)
@st.cache_data
def print_PL(amnt, thresh, extras = "" ):
if amnt > 0:
return color.BOLD + color.GREEN + str(amnt) + extras + color.END
elif amnt < 0:
return color.BOLD + color.RED + str(amnt)+ extras + color.END
elif np.isnan(amnt):
return str(np.nan)
else:
return str(amnt + extras)
@st.cache_data
def get_headers(logtype):
otimeheader = ""
cheader = ""
plheader = ""
fmat = '%Y-%m-%d %H:%M:%S'
if logtype == "ByBit":
otimeheader = 'Create Time'
cheader = 'Contracts'
plheader = 'Closed P&L'
fmat = '%Y-%m-%d %H:%M:%S'
if logtype == "BitGet":
otimeheader = 'Date'
cheader = 'Futures'
plheader = 'Realized P/L'
fmat = '%Y-%m-%d %H:%M:%S'
if logtype == "MEXC":
otimeheader = 'Trade time'
cheader = 'Futures'
plheader = 'closing position'
fmat = '%Y/%m/%d %H:%M'
if logtype == "Binance":
otimeheader = 'Date'
cheader = 'Symbol'
plheader = 'Realized Profit'
fmat = '%Y-%m-%d %H:%M:%S'
#if logtype == "Kucoin":
# otimeheader = 'Time'
# cheader = 'Contract'
# plheader = ''
# fmat = '%Y/%m/%d %H:%M:%S'
if logtype == "Kraken":
otimeheader = 'time'
cheader = 'asset'
plheader = 'amount'
fmat = '%Y-%m-%d %H:%M:%S.%f'
if logtype == "OkX":
otimeheader = '\ufeffOrder Time'
cheader = '\ufeffInstrument'
plheader = '\ufeffPL'
fmat = '%Y-%m-%d %H:%M:%S'
return otimeheader.lower(), cheader.lower(), plheader.lower(), fmat
@st.cache_data
def get_coin_info(df_coin, principal_balance,plheader):
numtrades = int(len(df_coin))
numwin = int(sum(df_coin[plheader] > 0))
numloss = int(sum(df_coin[plheader] < 0))
winrate = np.round(100*numwin/numtrades,4)
grosswin = sum(df_coin[df_coin[plheader] > 0][plheader])
grossloss = sum(df_coin[df_coin[plheader] < 0][plheader])
if grossloss != 0:
pfactor = -1*np.round(grosswin/grossloss,2)
else:
pfactor = np.nan
cum_PL = np.round(sum(df_coin[plheader].values),2)
cum_PL_perc = np.round(100*cum_PL/principal_balance,2)
mean_PL = np.round(sum(df_coin[plheader].values/len(df_coin)),2)
mean_PL_perc = np.round(100*mean_PL/principal_balance,2)
return numtrades, numwin, numloss, winrate, pfactor, cum_PL, cum_PL_perc, mean_PL, mean_PL_perc
@st.cache_data
def get_hist_info(df_coin, principal_balance,plheader):
numtrades = int(len(df_coin))
numwin = int(sum(df_coin[plheader] > 0))
numloss = int(sum(df_coin[plheader] < 0))
if numtrades != 0:
winrate = np.round(100*numwin/numtrades,4)
else:
winrate = np.nan
grosswin = sum(df_coin[df_coin[plheader] > 0][plheader])
grossloss = sum(df_coin[df_coin[plheader] < 0][plheader])
if grossloss != 0:
pfactor = -1*np.round(grosswin/grossloss,2)
else:
pfactor = np.nan
return numtrades, numwin, numloss, winrate, pfactor
@st.cache_data
def get_rolling_stats(df, lev, otimeheader, days):
max_roll = (df[otimeheader].max() - df[otimeheader].min()).days
if max_roll >= days:
rollend = df[otimeheader].max()-timedelta(days=days)
rolling_df = df[df[otimeheader] >= rollend]
if len(rolling_df) > 0:
rolling_perc = rolling_df['Return Per Trade'].dropna().cumprod().values[-1]-1
else:
rolling_perc = np.nan
else:
rolling_perc = np.nan
return 100*rolling_perc
@st.cache_data
def cc_coding(row):
return ['background-color: lightgrey'] * len(row) if row['Exit Date'] <= datetime.strptime('2022-12-16 00:00:00','%Y-%m-%d %H:%M:%S').date() else [''] * len(row)
def ctt_coding(row):
return ['background-color: lightgrey'] * len(row) if row['Exit Date'] <= datetime.strptime('2023-01-02 00:00:00','%Y-%m-%d %H:%M:%S').date() else [''] * len(row)
@st.cache_data
def my_style(v, props=''):
props = 'color:red' if v < 0 else 'color:green'
return props
def filt_df(df, cheader, symbol_selections):
df = df.copy()
df = df[df[cheader].isin(symbol_selections)]
return df
def drop_frac_cents(d):
D = np.floor(100*d)/100
return D
def load_data(filename, account, exchange, otimeheader, fmat):
cols1 = ['id','datetime', 'exchange', 'subaccount', 'pair', 'side', 'action', 'amount', 'price', 'errors']
cols2 = ['id','datetime', 'exchange', 'subaccount', 'pair', 'side', 'action', 'amount', 'price', 'errors', 'P/L', 'P/L %','exit price', 'Lev']
old_df = pd.read_csv("history-old.csv", header = 0, names= cols1)
df = pd.read_csv(filename, header = 0, names= cols2)
df.loc[df['exit price'] > 0, 'price'] = df.loc[df['exit price'] > 0, 'exit price']
df = pd.concat([old_df, df], ignore_index=True)
filtdf = df[(df.exchange == exchange) & (df.subaccount == account)].dropna()
if not filtdf.empty:
filtdf = filtdf.sort_values('datetime')
filtdf = filtdf.iloc[np.where(filtdf.action == 'open')[0][0]:, :] #get first open signal in dataframe
tnum = 0
dca = 0
newdf = pd.DataFrame([], columns=['Trade','Signal','Entry Date','Buy Price', 'Sell Price','Exit Date', 'P/L per token', 'P/L %'])
for index, row in filtdf.iterrows():
if row.action == 'open':
dca += 1
tnum += 1
sig = 'Long' if row.side == 'long' else 'Short'
temp = pd.DataFrame({'Trade' :[tnum], 'Signal': [sig], 'Entry Date':[row.datetime],'Buy Price': [row.price], 'Sell Price': [np.nan],'Exit Date': [np.nan], 'P/L per token': [np.nan], 'P/L %': [np.nan], 'DCA': [dca]})
newdf = pd.concat([newdf,temp], ignore_index = True)
if row.action == 'close':
for j in np.arange(tnum-1, tnum-dca-1,-1):
newdf.loc[j,'Sell Price'] = row.price
newdf.loc[j,'Exit Date'] = row.datetime
dca = 0
newdf['Buy Price'] = pd.to_numeric(newdf['Buy Price'])
newdf['Sell Price'] = pd.to_numeric(newdf['Sell Price'])
newdf['P/L per token'] = newdf['Sell Price'] - newdf['Buy Price']
newdf['P/L %'] = 100*newdf['P/L per token']/newdf['Buy Price']
newdf = newdf.dropna()
else:
newdf = pd.DataFrame([], columns=['Trade','Signal','Entry Date','Buy Price', 'Sell Price','Exit Date', 'P/L per token', 'P/L %'])
if account == 'Pure Bread (ByBit)':
tvdata = pd.read_csv('pb-history-old.csv',header = 0).drop('Unnamed: 0', axis=1)
elif account == 'PUMPernickel (ByBit)':
tvdata = pd.read_csv('pn-history-old.csv',header = 0).drop('Unnamed: 0', axis=1)
else:
tvdata = pd.DataFrame([])
if tvdata.empty:
df = newdf
else:
df = pd.concat([tvdata, newdf], ignore_index =True)
df = df.sort_values('Entry Date', ascending = True)
df.index = range(len(df))
df.Trade = df.index + 1
dateheader = 'Date'
theader = 'Time'
df[dateheader] = [tradetimes.split(" ")[0] for tradetimes in df[otimeheader].values]
df[theader] = [tradetimes.split(" ")[1] for tradetimes in df[otimeheader].values]
df[otimeheader] = pd.to_datetime(df[otimeheader])
df['Exit Date'] = pd.to_datetime(df['Exit Date'])
df[dateheader] = [dateutil.parser.parse(date).date() for date in df[dateheader]]
df[theader] = [dateutil.parser.parse(time).time() for time in df[theader]]
return df
@st.cache_data
def get_account_drawdown(trades, principal_balance):
max_draw_perc = 0.00
beg = 0
trades = np.hstack([0.0, trades.dropna().values]) + principal_balance
if len(trades) > 2:
for ind in range(len(trades)-1):
delta = 100*(trades[ind+1:] - trades[ind])/trades[ind]
max_draw_perc = min(max_draw_perc, delta.min())
else:
max_draw = min(max_draw, trades)
max_draw_perc = 100*max_draw/(principal_balance)
return max_draw_perc
def get_pl(bot_selections, df, dca_amnt, dollar_cap, lev, principal_balance):
signal_map = {'Long': 1, 'Short':-1}
fees = .075/100
if df.empty:
cum_pl = principal_balance
effective_return = 0.0
else:
if bot_selections == 'ct':
dca_map = {1: dca_amnt/100, 2: dca_amnt/100, 3: dca_amnt/100, 4: dca_amnt/100, 5: dca_amnt/100, 6: dca_amnt/100}
df['DCA %'] = df['DCA'].map(dca_map)
df['Calculated Return %'] = (df['DCA %'])*(df['Signal'].map(signal_map)*(df['Sell Price']-df['Buy Price'])/df['Buy Price']-2*fees) #accounts for fees on open and close of trade
df['DCA'] = np.floor(df['DCA'].values)
df['Return Per Trade'] = np.nan
df['Balance used in Trade'] = np.nan
df['New Balance'] = np.nan
g = df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return %'].reset_index(name='Return Per Trade')
df.loc[df['DCA']==1.0,'Return Per Trade'] = 1+lev*g['Return Per Trade'].values
df['Compounded Return'] = df['Return Per Trade'].cumprod()
df.loc[df['DCA']==1.0,'New Balance'] = [min(dollar_cap/lev, bal*principal_balance) for bal in df.loc[df['DCA']==1.0,'Compounded Return']]
df.loc[df['DCA']==1.0,'Balance used in Trade'] = np.concatenate([[principal_balance], df.loc[df['DCA']==1.0,'New Balance'].values[:-1]])
else:
df['Calculated Return %'] = (df['Signal'].map(signal_map)*(df['Sell Price']-df['Buy Price'])/df['Buy Price'])-2*fees #accounts for fees on open and close of trade
df['Return Per Trade'] = np.nan
g = df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return %'].reset_index(name='Return Per Trade')
df['Return Per Trade'] = 1+lev*g['Return Per Trade'].values
df['Compounded Return'] = df['Return Per Trade'].cumprod()
df['New Balance'] = [min(dollar_cap/lev, bal*principal_balance) for bal in df['Compounded Return']]
df['Balance used in Trade'] = np.concatenate([[principal_balance], df['New Balance'].values[:-1]])
df['Net P/L Per Trade'] = drop_frac_cents((df['Return Per Trade']-1)*df['Balance used in Trade'])
df['Cumulative P/L'] = df['Net P/L Per Trade'].cumsum()
cum_pl = df.loc[df.dropna().index[-1],'Cumulative P/L'] + principal_balance
effective_return = 100*((cum_pl - principal_balance)/principal_balance)
return df, cum_pl, effective_return
def runapp() -> None:
no_errors = True
otimeheader = 'Exit Date'
fmat = '%Y-%m-%d %H:%M:%S'
dollar_cap = 1000000000.00
pn_data = load_data('history.csv', 'PUMPernickel (ByBit)', 'Bybit Futures', otimeheader, fmat)
pb_data = load_data('history.csv', 'Pure Bread (ByBit)', 'Bybit Futures', otimeheader, fmat)
df = pd.concat([pn_data, pb_data])
ct_df = pn_data.copy(deep=True)
pb_df = pb_data.copy(deep=True)
dateheader = 'Date'
theader = 'Time'
with st.form("user input", ):
st.header("Choose your settings:")
if no_errors:
with st.container():
col1, col2, col3 = st.columns(3)
with col1:
try:
startdate = st.date_input("Start Date", value=pd.to_datetime(df[otimeheader]).min())
except:
st.error("Please select a valid start date.")
no_errors = False
with col2:
try:
enddate = st.date_input("End Date", value=datetime.today())
except:
st.error("Please select a valid end date.")
no_errors = False
with col3:
principal_balance = st.number_input('Starting Balance', min_value=0.00, value=1000.00, max_value= dollar_cap, step=.01)
#st.sidebar.subheader("Customize your Dashboard")
if no_errors and (enddate < startdate):
st.error("End Date must be later than Start date. Please try again.")
no_errors = False
if no_errors:
dca_amnt = 100/5
with st.container():
col1,col2 = st.columns(2)
with col1:
st.write("**Pumpernickel (PN)**")
ct_lev = st.number_input('PN Leverage', min_value=1, value=1, max_value= 2, step=1)
ct_alloc = st.number_input("PN Allocation (%)", min_value=0, value=50, max_value=100, step=1)
with col2:
st.write("**Pure Bread (PB)**")
pb_lev = st.number_input('PB Leverage', min_value=1, value=1, max_value= 3, step=1)
pb_alloc = st.number_input("PB Allocation (%)", min_value=0, value=50, max_value=100, step=1)
#hack way to get button centered
c = st.columns(5)
with c[2]:
submitted = st.form_submit_button("Get Cookin'!")
if submitted and principal_balance *ct_alloc/100 * ct_lev > dollar_cap:
ct_lev = np.floor(dollar_cap/(principal_balance*ct_alloc/100))
st.error(f"WARNING:Allocated balance for Pumpernickel exceeds the ${dollar_cap} limit. Using maximum available leverage of {ct_lev}")
if submitted and principal_balance *pb_alloc/100 * pb_lev > dollar_cap:
pb_lev = np.floor(pb_dollar_cap/(principal_balance*pb_alloc/100))
st.error(f"WARNING:Allocated balance for Pure Bread exceeds the ${dollar_cap} limit. Using maximum available leverage of {pb_lev}")
if submitted and (ct_alloc + pb_alloc) > 100:
st.error("Invalid allocation amounts. The total allocations must not exceed 100% of available funds. Please check your allocations and try again.")
no_errors = False
if submitted and (ct_alloc + pb_alloc) < 100:
st.error(f'WARNING: The allocation amounts you have selected do not sum to 100%. Only {ct_alloc + pb_alloc}% of the starting balance will be used for trading.')
if no_errors == True:
df = df[(df[dateheader] >= startdate) & (df[dateheader] <= enddate)]
ct_df = ct_df[(ct_df[dateheader] >= startdate) & (ct_df[dateheader] <= enddate)]
pb_df = pb_df[(pb_df[dateheader] >= startdate) & (pb_df[dateheader] <= enddate)]
if len(df) == 0:
st.error("There are no available trades matching your selections. Please try again!")
no_errors = False
ct_df, ct_cum_pl, ct_effective_return = get_pl('ct', ct_df, dca_amnt, dollar_cap, ct_lev, principal_balance*ct_alloc/100)
pb_df, pb_cum_pl, pb_effective_return = get_pl('pb', pb_df, dca_amnt, dollar_cap, pb_lev, principal_balance*pb_alloc/100)
combo = pd.concat([ct_df, pb_df], ignore_index = True).sort_values('Entry Date')
combo['Cumulative P/L'] = combo['Net P/L Per Trade'].cumsum()
max_draw = get_account_drawdown(combo['Cumulative P/L'], principal_balance)
cum_pl = ct_cum_pl + pb_cum_pl
effective_return = ct_alloc/100*ct_effective_return + pb_alloc/100*pb_effective_return
st.header(f"Bread Bundle Results")
with st.container():
st.metric(
"Total Account Balance",
f"${cum_pl:.2f}",
f"{100*(cum_pl-principal_balance)/(principal_balance):.2f} %",
)
col1, col2 = st.columns(2)
with col1:
st.metric(
"Pumpernickel Balance",
f"${ct_cum_pl:.2f}",
f"{ct_alloc*(ct_cum_pl-principal_balance*ct_alloc/100)/(principal_balance*ct_alloc/100):.2f} %",
)
with col2:
st.metric(
"Pure Bread Balance",
f"${pb_cum_pl:.2f}",
f"{pb_alloc*(pb_cum_pl-principal_balance*pb_alloc/100)/(principal_balance*pb_alloc/100):.2f} %",
)
ct_df.insert(1, 'Bot', ['PN']*len(ct_df))
if ct_df.empty:
grouped_ct = pd.DataFrame([])
else:
grouped_ct = ct_df.groupby('Exit Date').agg({'Bot': 'first', 'Signal':'min','Entry Date': 'min','Exit Date': 'max','Buy Price': 'mean',
'Sell Price' : 'max',
'Net P/L Per Trade': 'mean',
'Return Per Trade': 'mean',
'Calculated Return %' : lambda x: np.round(ct_alloc*ct_lev*x.sum(),2),
'DCA': lambda x: int(np.floor(x.max()))})
pb_df.insert(1, 'Bot', ['PB']*len(pb_df))
if pb_df.empty:
grouped_pb = pd.DataFrame([])
else:
grouped_pb = pb_df.groupby('Exit Date').agg({'Bot': 'first', 'Signal':'min','Entry Date': 'min','Exit Date': 'max','Buy Price': 'mean',
'Sell Price' : 'max',
'Net P/L Per Trade': 'mean',
'Return Per Trade': 'mean',
'Calculated Return %' : lambda x: np.round(pb_alloc*pb_lev*x.sum(),2)})
all_dfs = [grouped_ct, grouped_pb]
df = pd.concat([d for d in all_dfs if not d.empty])
df['Entry Date'] = pd.to_datetime(df['Entry Date'])
df['Exit Date'] = pd.to_datetime(df['Exit Date'])
df.index = range(len(df))
df.sort_values('Exit Date', ascending = True, inplace=True)
# Create figure
fig = go.Figure()
pyLogo = Image.open("logo.png")
# Add trace
fig.add_trace(
go.Scatter(x=df['Exit Date'], y=np.round(df['Net P/L Per Trade'].cumsum().values,2), line_shape='spline',
line = {'smoothing': 1.0, 'color' : 'rgba(31, 119, 200,.8)'},
name='Cumulative P/L')
)
dfdata = df[(df['Bot'] == 'PN')]
eth_buyhold = ((ct_alloc)/100*principal_balance/dfdata['Buy Price'][dfdata.index[0]])*(dfdata['Buy Price']-dfdata['Buy Price'][dfdata.index[0]])
fig.add_trace(go.Scatter(x=dfdata['Exit Date'], y=np.round(eth_buyhold.values,2), line_shape='spline',
line = {'smoothing': 1.0, 'color' :'red'}, name = 'ETH Buy & Hold Return')
)
dfdata = df[df['Bot'] == 'PB']
doge_buyhold = ((pb_alloc)/100*principal_balance/dfdata['Buy Price'][dfdata.index[0]])*(dfdata['Buy Price']-dfdata['Buy Price'][dfdata.index[0]])
fig.add_trace(go.Scatter(x=dfdata['Exit Date'], y=np.round(doge_buyhold.values,2), line_shape='spline',
line = {'smoothing': 1.0, 'color' :'green'}, name = 'DOGE Buy & Hold Return')
)
img_width = 2001
img_height = 622
fig.add_layout_image(
dict(
source=pyLogo,
xref="paper",
yref="paper",
x = 0.1,
y = 1,
xanchor ="left", yanchor = "top",
sizex= 1,
sizey= 1,
opacity=0.2,
layer = "below")
)
#style layout
fig.update_layout(
height = 550,
xaxis=dict(
title="Exit Date",
tickmode='array',
showgrid=False
),
yaxis=dict(
title="Cumulative P/L",
showgrid=False
),
legend=dict(
x=.05,
y=0.95,
traceorder="normal"
),
plot_bgcolor = 'rgba(10, 10, 10, 1)'
)
st.plotly_chart(fig, theme=None, use_container_width=True, height=550)
df['Per Trade Return Rate'] = df['Return Per Trade']-1
totals = pd.DataFrame([], columns = ['# of Trades', 'Wins', 'Losses', 'Win Rate', 'Profit Factor'])
data = get_hist_info(df, principal_balance,'Per Trade Return Rate')
totals.loc[len(totals)] = list(i for i in data)
totals['Cum. P/L'] = cum_pl-principal_balance
totals['Cum. P/L (%)'] = 100*(cum_pl-principal_balance)/principal_balance
if df.empty:
st.error("Oops! None of the data provided matches your selection(s). Please try again.")
else:
with st.container():
for row in totals.itertuples():
c1, c2, c3, c4 = st.columns(4)
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric(
"Total Trades",
f"{row._1:.0f}",
)
with c1:
st.metric(
"Cumulative P/L",
f"${row._6:.2f}",
f"{row._7:.2f} %",
)
with col2:
st.metric(
"Wins",
f"{row.Wins:.0f}",
)
with c2:
st.metric(
"Profit Factor",
f"{row._5:.2f}",
)
with col3:
st.metric(
"Losses",
f"{row.Losses:.0f}",
)
with c3:
st.metric(
"Rolling 7 Days",
"",#f"{(1+get_rolling_stats(df,lev, otimeheader, 7)/100)*principal_balance:.2f}",
f"{(ct_alloc*get_rolling_stats(df[(df['Bot'] == 'PN')],ct_lev, otimeheader, 7) + pb_alloc*get_rolling_stats(df[(df['Bot'] == 'PB')],pb_lev, otimeheader, 7))/100:.2f}%",
)
st.metric(
"Rolling 90 Days",
"",#f"{(1+get_rolling_stats(df,lev, otimeheader, 30)/100)*principal_balance:.2f}",
f"{(ct_alloc*get_rolling_stats(df[(df['Bot'] == 'PN')],ct_lev, otimeheader, 90) + pb_alloc*get_rolling_stats(df[(df['Bot'] == 'PB')],pb_lev, otimeheader, 90))/100:.2f}%",
)
with col4:
st.metric(
"Win Rate",
f"{row._4:.1f}%",
)
with c4:
st.metric(
"Rolling 30 Days",
"",#f"{(1+get_rolling_stats(df,lev, otimeheader, 90)/100)*principal_balance:.2f}",
f"{(ct_alloc*get_rolling_stats(df[(df['Bot'] == 'PN')],ct_lev, otimeheader, 30) + pb_alloc*get_rolling_stats(df[(df['Bot'] == 'PB')],pb_lev, otimeheader, 30))/100:.2f}%",
)
st.metric(
"Max Drawdown",
"",#f"{np.round(100*max_draw/principal_balance,2)/100*principal_balance:.2f}",
f"{np.round(max_draw,2)}%",
)
df.rename(columns={'DCA' : '# of DCAs', 'Buy Price':'Avg. Buy Price', 'Sell Price': 'Avg. Sell Price',
'Net P/L Per Trade':'Net P/L',
'Calculated Return %':'P/L %'}, inplace=True)
if '# of DCAs' in df.columns:
df['# of DCAs'] = df['# of DCAs'].fillna(1.0)
df['# of DCAs'] = [int(i) for i in df['# of DCAs'].values]
else:
df['# of DCAs'] = np.ones(len(df))
df.sort_values('Entry Date', ascending = True, inplace=True)
df.insert(0,'Trade',np.arange(1, len(df)+1))
df.index = range(len(df))
df = df.drop('Per Trade Return Rate', axis=1)
df = df.drop('Return Per Trade', axis=1)
st.subheader("Trade Logs")
st.dataframe(df.style.format({'Entry Date':'{:%m-%d-%Y %H:%M:%S}','Exit Date':'{:%m-%d-%Y %H:%M:%S}','Avg. Buy Price': conditional_formatter, 'Avg. Sell Price': conditional_formatter, 'Net P/L':'${:.2f}', 'P/L %':'{:.2f}%'})\
.applymap(my_style,subset=['Net P/L'])\
.applymap(my_style,subset=['P/L %']), use_container_width=True)
if __name__ == "__main__":
st.set_page_config(
"Trading Bot Dashboard", layout = 'wide'
)
runapp()
# -
|