File size: 40,208 Bytes
ea9526a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
# ---
# jupyter:
#   jupytext:
#     text_representation:
#       extension: .py
#       format_name: light
#       format_version: '1.5'
#       jupytext_version: 1.14.2
#   kernelspec:
#     display_name: Python [conda env:bbytes] *
#     language: python
#     name: conda-env-bbytes-py
# ---

# +
import csv 
import pandas as pd
from datetime import datetime, timedelta
import numpy as np
import datetime as dt
import matplotlib.pyplot as plt
from pathlib import Path
import time
import plotly.graph_objects as go
import plotly.io as pio
from PIL import Image

import streamlit as st
import plotly.express as px
import altair as alt
import dateutil.parser
from  matplotlib.colors import LinearSegmentedColormap


# +
class color:
    PURPLE = '\033[95m'
    CYAN = '\033[96m'
    DARKCYAN = '\033[36m'
    BLUE = '\033[94m'
    GREEN = '\033[92m'
    YELLOW = '\033[93m'
    RED = '\033[91m'
    BOLD = '\033[1m'
    UNDERLINE = '\033[4m'
    END = '\033[0m'
    
@st.experimental_memo    
def print_PL(amnt, thresh, extras = "" ):
    if amnt > 0:
        return color.BOLD + color.GREEN + str(amnt) + extras + color.END
    elif amnt < 0:
        return color.BOLD + color.RED + str(amnt)+ extras + color.END
    elif np.isnan(amnt):
        return str(np.nan)
    else:
        return str(amnt + extras)
    
@st.experimental_memo      
def get_headers(logtype):
    otimeheader = ""
    cheader = ""
    plheader = ""
    fmat = '%Y-%m-%d %H:%M:%S'
    
    if logtype == "ByBit":
        otimeheader = 'Create Time'
        cheader = 'Contracts'
        plheader = 'Closed P&L'
        fmat = '%Y-%m-%d %H:%M:%S'
        
    if logtype == "BitGet":
        otimeheader = 'Date'
        cheader = 'Futures'
        plheader = 'Realized P/L'
        fmat = '%Y-%m-%d %H:%M:%S'  
        
    if logtype == "MEXC":
        otimeheader = 'Trade time'
        cheader = 'Futures'
        plheader = 'closing position'
        fmat = '%Y/%m/%d %H:%M'
        
    if logtype == "Binance":
        otimeheader = 'Date'
        cheader = 'Symbol'
        plheader = 'Realized Profit'
        fmat = '%Y-%m-%d %H:%M:%S'
        
    #if logtype == "Kucoin":
    #    otimeheader = 'Time'
    #    cheader = 'Contract'
    #    plheader = ''
    #    fmat = '%Y/%m/%d %H:%M:%S' 

        
    if logtype == "Kraken":
        otimeheader = 'time'
        cheader = 'asset'
        plheader = 'amount'
        fmat = '%Y-%m-%d %H:%M:%S.%f'  
        
    if logtype == "OkX":
        otimeheader = '\ufeffOrder Time'
        cheader = '\ufeffInstrument'
        plheader = '\ufeffPL'
        fmat = '%Y-%m-%d %H:%M:%S'        
    
    return otimeheader.lower(), cheader.lower(), plheader.lower(), fmat
    
@st.experimental_memo    
def get_coin_info(df_coin, principal_balance,plheader):
    numtrades = int(len(df_coin))
    numwin = int(sum(df_coin[plheader] > 0))
    numloss = int(sum(df_coin[plheader] < 0))
    winrate = np.round(100*numwin/numtrades,2)
    
    grosswin = sum(df_coin[df_coin[plheader] > 0][plheader])
    grossloss = sum(df_coin[df_coin[plheader] < 0][plheader])
    if grossloss != 0:
        pfactor = -1*np.round(grosswin/grossloss,2)
    else: 
        pfactor = np.nan
    
    cum_PL = np.round(sum(df_coin[plheader].values),2)
    cum_PL_perc = np.round(100*cum_PL/principal_balance,2)
    mean_PL = np.round(sum(df_coin[plheader].values/len(df_coin)),2)
    mean_PL_perc = np.round(100*mean_PL/principal_balance,2)
    
    return numtrades, numwin, numloss, winrate, pfactor, cum_PL, cum_PL_perc, mean_PL, mean_PL_perc

@st.experimental_memo
def get_hist_info(df_coin, principal_balance,plheader):
    numtrades = int(len(df_coin))
    numwin = int(sum(df_coin[plheader] > 0))
    numloss = int(sum(df_coin[plheader] < 0))
    if numtrades != 0:
        winrate = int(np.round(100*numwin/numtrades,2))
    else: 
        winrate = np.nan
    
    grosswin = sum(df_coin[df_coin[plheader] > 0][plheader])
    grossloss = sum(df_coin[df_coin[plheader] < 0][plheader])
    if grossloss != 0:
        pfactor = -1*np.round(grosswin/grossloss,2)
    else: 
        pfactor = np.nan
    return numtrades, numwin, numloss, winrate, pfactor

@st.experimental_memo
def get_rolling_stats(df, lev, otimeheader, days):
    max_roll = (df[otimeheader].max() - df[otimeheader].min()).days
    
    if max_roll >= days:
        rollend = df[otimeheader].max()-timedelta(days=days)
        rolling_df = df[df[otimeheader] >= rollend]

        if len(rolling_df) > 0:
            rolling_perc = rolling_df['Return Per Trade'].dropna().cumprod().values[-1]-1
        else: 
            rolling_perc = np.nan
    else:
        rolling_perc = np.nan
    return 100*rolling_perc
@st.experimental_memo
def cc_coding(row):
    return ['background-color: lightgrey'] * len(row) if (row['Exit Date'] <= datetime.strptime('2022-12-16 00:00:00','%Y-%m-%d %H:%M:%S').date() and row['Bot'] == "CC") else [''] * len(row)
def ctt_coding(row):
    return ['background-color: lightgrey'] * len(row) if row['Exit Date'] <= datetime.strptime('2023-01-02 00:00:00','%Y-%m-%d %H:%M:%S').date() else [''] * len(row)
def conditional_formatter(value):
    return "${:.2f}".format(value) if not (abs(value) < 1.00) else "${:.4f}".format(value)

@st.experimental_memo
def my_style(v, props=''):
    props = 'color:red' if v < 0 else 'color:green'
    return props

def filt_df(df, cheader, symbol_selections):
    
    df = df.copy()
    df = df[df[cheader].isin(symbol_selections)]

    return df

def tv_reformat(close50filename):
    try:
        data = pd.read_csv(open(close50filename,'r'), sep='[,|\t]', engine='python')
    except: 
        data = pd.DataFrame([])
    
    if data.empty:
        return data 
    else:
        entry_df = data[data['Type'].str.contains("Entry")]
        exit_df = data[data['Type'].str.contains("Exit")]

        entry_df.index = range(len(entry_df))
        exit_df.index = range(len(exit_df))

        df = pd.DataFrame([], columns=['Trade','Entry Date','Buy Price', 'Sell Price','Exit Date', 'P/L per token', 'P/L %', 'Drawdown %'])
        
        df['Signal'] = [string.split(' ')[1] for string in entry_df['Type']]
        df['Trade'] = entry_df.index
        df['Entry Date'] = entry_df['Date/Time']
        df['Buy Price'] = entry_df['Price USDT']

        df['Sell Price'] = exit_df['Price USDT']
        df['Exit Date'] = exit_df['Date/Time']
        df['P/L per token'] = df['Sell Price'] - df['Buy Price']
        df['P/L %'] = exit_df['Profit %']
        df['Drawdown %'] = exit_df['Drawdown %']
        df['Close 50'] = [int(i == "Close 50% of Position") for i in exit_df['Signal']]
        df = df.sort_values(['Entry Date','Close 50'], ascending = [False, True])
        df.index = range(len(df))
        
        df.loc[df['Close 50'] == 1, 'Exit Date'] = np.copy(df.loc[df[df['Close 50'] == 1].index.values-1]['Exit Date'])

        grouped_df = df.groupby('Entry Date').agg({'Signal' : 'first', 'Entry Date': 'min', 'Buy Price':'mean',
                                 'Sell Price' : 'mean',
                                 'Exit Date': 'max',
                                 'P/L per token': 'mean', 
                                 'P/L %' : 'mean'})

        grouped_df.insert(0,'Trade', range(len(grouped_df)))
        grouped_df.index = range(len(grouped_df))
        return grouped_df

def load_data(filename, otimeheader, fmat):
    df = pd.read_csv(open(filename,'r'), sep='\t') # so as not to mutate cached value
    close50filename = filename.split('.')[0] + '-50.' + filename.split('.')[1]
    df2 = tv_reformat(close50filename)
    
    if filename == "CT-Trade-Log.csv":
        df.columns = ['Trade','Entry Date','Buy Price', 'Sell Price','Exit Date', 'P/L per token', 'P/L %', 'Drawdown %']
        df.insert(1, 'Signal', ['Long']*len(df)) 
    elif filename == "CC-Trade-Log.csv" or filename == "PB-Trade-Log.csv":
        df.columns = ['Trade','Signal','Entry Date','Buy Price', 'Sell Price','Exit Date', 'P/L per token', 'P/L %', 'Drawdown %']
    else: 
        df.columns = ['Trade','Signal','Entry Date','Buy Price', 'Sell Price','Exit Date', 'P/L per token', 'P/L %']
        
    if filename != "CT-Toasted-Trade-Log.csv":
        df['Signal'] = df['Signal'].str.replace(' ', '', regex=True)
        df['Buy Price'] = df['Buy Price'].str.replace('$', '', regex=True)
        df['Sell Price'] = df['Sell Price'].str.replace('$', '', regex=True)
        df['Buy Price'] = df['Buy Price'].str.replace(',', '', regex=True)
        df['Sell Price'] = df['Sell Price'].str.replace(',', '', regex=True)
        df['P/L per token'] = df['P/L per token'].str.replace('$', '', regex=True)
        df['P/L per token'] = df['P/L per token'].str.replace(',', '', regex=True)
        df['P/L %'] = df['P/L %'].str.replace('%', '', regex=True)

        df['Buy Price'] = pd.to_numeric(df['Buy Price'])
        df['Sell Price'] = pd.to_numeric(df['Sell Price'])
        df['P/L per token'] = pd.to_numeric(df['P/L per token'])
        df['P/L %'] = pd.to_numeric(df['P/L %'])
    
    if df2.empty: 
        df = df
    else:
        df = pd.concat([df,df2], axis=0, ignore_index=True)
    
    if filename == "CT-Trade-Log.csv":
        df['Signal'] = ['Long']*len(df)
    
    dateheader = 'Date'
    theader = 'Time'
    
    df[dateheader] = [tradetimes.split(" ")[0] for tradetimes in df[otimeheader].values]
    df[theader] = [tradetimes.split(" ")[1] for tradetimes in df[otimeheader].values]

    df[otimeheader]= [dateutil.parser.parse(date+' '+time)
                                  for date,time in zip(df[dateheader],df[theader])]
    df[otimeheader] = pd.to_datetime(df[otimeheader])
    df['Exit Date'] = pd.to_datetime(df['Exit Date'])
    df.sort_values(by=otimeheader, inplace=True)
    
    df[dateheader] = [dateutil.parser.parse(date).date() for date in df[dateheader]]
    df[theader] = [dateutil.parser.parse(time).time() for time in df[theader]]
    df['Trade'] = df.index + 1 #reindex
    
    if filename == "CT-Trade-Log.csv":
        df['DCA'] = np.nan

        for exit in pd.unique(df['Exit Date']):
            df_exit = df[df['Exit Date']==exit]
            if dateutil.parser.parse(str(exit)) < dateutil.parser.parse('2023-02-07 13:00:00'):
                for i in range(len(df_exit)):
                    ind = df_exit.index[i]
                    df.loc[ind,'DCA'] = i+1
                    
            else: 
                for i in range(len(df_exit)):
                    ind = df_exit.index[i]
                    df.loc[ind,'DCA'] = i+1.1
    return df 

def get_pl(bot_selections, df, dca1, dca2, dca3, dca4, dca5, dca6, dollar_cap, lev, principal_balance):
    signal_map = {'Long': 1, 'Short':-1}  
    fees = .075/100
    if df.empty: 
        cum_pl = principal_balance
        effective_return = 0.0
    else: 
        if bot_selections == 'ct':
            dca_map = {1: dca1/100, 2: dca2/100, 3: dca3/100, 4: dca4/100, 1.1: dca5/100, 2.1: dca6/100}
            df['DCA %'] = df['DCA'].map(dca_map)
            df['Calculated Return %'] = df['Signal'].map(signal_map)*(df['DCA %'])*(1-fees)*((df['Sell Price']-df['Buy Price'])/df['Buy Price'] - fees) #accounts for fees on open and close of trade 
            df['DCA'] = np.floor(df['DCA'].values)
    
            df['Return Per Trade'] = np.nan
            df['Balance used in Trade'] = np.nan
            df['New Balance'] = np.nan
    
            g = df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return %'].reset_index(name='Return Per Trade')
            df.loc[df['DCA']==1.0,'Return Per Trade'] = 1+lev*g['Return Per Trade'].values
    
            df['Compounded Return'] = df['Return Per Trade'].cumprod()
            df.loc[df['DCA']==1.0,'New Balance'] = [min(dollar_cap/lev, bal*principal_balance) for bal in df.loc[df['DCA']==1.0,'Compounded Return']]
            df.loc[df['DCA']==1.0,'Balance used in Trade'] = np.concatenate([[principal_balance], df.loc[df['DCA']==1.0,'New Balance'].values[:-1]])
        else: 
            df['Calculated Return %'] = df['Signal'].map(signal_map)*(1-fees)*((df['Sell Price']-df['Buy Price'])/df['Buy Price'] - fees) #accounts for fees on open and close of trade 
            df['Return Per Trade'] = np.nan
            g = df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return %'].reset_index(name='Return Per Trade')
            df['Return Per Trade'] = 1+lev*g['Return Per Trade'].values
    
            df['Compounded Return'] = df['Return Per Trade'].cumprod()
            df['New Balance'] = [min(dollar_cap/lev, bal*principal_balance) for bal in df['Compounded Return']]
            df['Balance used in Trade'] = np.concatenate([[principal_balance], df['New Balance'].values[:-1]])
        df['Net P/L Per Trade'] = (df['Return Per Trade']-1)*df['Balance used in Trade']
        df['Cumulative P/L'] = df['Net P/L Per Trade'].cumsum()
    
        if bot_selections == 'ct' or bot_selections == 'cc' or bot_selections == 'pb':
            cum_pl = df.loc[df.drop('Drawdown %', axis=1).dropna().index[-1],'Cumulative P/L'] + principal_balance
        else: 
            cum_pl = df.loc[df.dropna().index[-1],'Cumulative P/L'] + principal_balance
    
        effective_return = 100*((cum_pl - principal_balance)/principal_balance)
    
    return df, cum_pl, effective_return

def get_sd_df(sd_df, sd, bot_selections, dca1, dca2, dca3, dca4, dca5, dca6, fees, lev, dollar_cap, principal_balance):
    sd = 2*.00026
    # ------ Standard Dev. Calculations. 
    if bot_selections == "Cinnamon Toast":
        dca_map = {1: dca1/100, 2: dca2/100, 3: dca3/100, 4: dca4/100, 1.1: dca5/100, 2.1: dca6/100}
        sd_df['DCA %'] = sd_df['DCA'].map(dca_map)
        sd_df['Calculated Return % (+)'] = df['Signal'].map(signal_map)*(df['DCA %'])*(1-fees)*((df['Sell Price']*(1+df['Signal'].map(signal_map)*sd) - df['Buy Price']*(1-df['Signal'].map(signal_map)*sd))/df['Buy Price']*(1-df['Signal'].map(signal_map)*sd) - fees) #accounts for fees on open and close of trade 
        sd_df['Calculated Return % (-)'] = df['Signal'].map(signal_map)*(df['DCA %'])*(1-fees)*((df['Sell Price']*(1-df['Signal'].map(signal_map)*sd)-df['Buy Price']*(1+df['Signal'].map(signal_map)*sd))/df['Buy Price']*(1+df['Signal'].map(signal_map)*sd) - fees) #accounts for fees on open and close of trade 
        sd_df['DCA'] = np.floor(sd_df['DCA'].values)

        sd_df['Return Per Trade (+)'] = np.nan
        sd_df['Return Per Trade (-)'] = np.nan
        sd_df['Balance used in Trade (+)'] = np.nan
        sd_df['Balance used in Trade (-)'] = np.nan
        sd_df['New Balance (+)'] = np.nan
        sd_df['New Balance (-)'] = np.nan

        g1 = sd_df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return % (+)'].reset_index(name='Return Per Trade (+)')
        g2 = sd_df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return % (-)'].reset_index(name='Return Per Trade (-)')
        sd_df.loc[sd_df['DCA']==1.0,'Return Per Trade (+)'] = 1+lev*g1['Return Per Trade (+)'].values
        sd_df.loc[sd_df['DCA']==1.0,'Return Per Trade (-)'] = 1+lev*g2['Return Per Trade (-)'].values

        sd_df['Compounded Return (+)'] = sd_df['Return Per Trade (+)'].cumprod()
        sd_df['Compounded Return (-)'] = sd_df['Return Per Trade (-)'].cumprod()
        sd_df.loc[sd_df['DCA']==1.0,'New Balance (+)'] = [min(dollar_cap/lev, bal*principal_balance) for bal in sd_df.loc[sd_df['DCA']==1.0,'Compounded Return (+)']]
        sd_df.loc[sd_df['DCA']==1.0,'Balance used in Trade (+)'] = np.concatenate([[principal_balance], sd_df.loc[sd_df['DCA']==1.0,'New Balance (+)'].values[:-1]])

        sd_df.loc[sd_df['DCA']==1.0,'New Balance (-)'] = [min(dollar_cap/lev, bal*principal_balance) for bal in sd_df.loc[sd_df['DCA']==1.0,'Compounded Return (-)']]
        sd_df.loc[sd_df['DCA']==1.0,'Balance used in Trade (-)'] = np.concatenate([[principal_balance], sd_df.loc[sd_df['DCA']==1.0,'New Balance (-)'].values[:-1]])
    else: 
        sd_df['Calculated Return % (+)'] = df['Signal'].map(signal_map)*(1-fees)*((df['Sell Price']*(1+df['Signal'].map(signal_map)*sd) - df['Buy Price']*(1-df['Signal'].map(signal_map)*sd))/df['Buy Price']*(1-df['Signal'].map(signal_map)*sd) - fees) #accounts for fees on open and close of trade 
        sd_df['Calculated Return % (-)'] = df['Signal'].map(signal_map)*(1-fees)*((df['Sell Price']*(1-df['Signal'].map(signal_map)*sd)-df['Buy Price']*(1+df['Signal'].map(signal_map)*sd))/df['Buy Price']*(1+df['Signal'].map(signal_map)*sd) - fees) #accounts for fees on open and close of trade 
        sd_df['Return Per Trade (+)'] = np.nan
        sd_df['Return Per Trade (-)'] = np.nan

        g1 = sd_df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return % (+)'].reset_index(name='Return Per Trade (+)')
        g2 = sd_df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return % (-)'].reset_index(name='Return Per Trade (-)')
        sd_df['Return Per Trade (+)'] = 1+lev*g1['Return Per Trade (+)'].values
        sd_df['Return Per Trade (-)'] = 1+lev*g2['Return Per Trade (-)'].values

        sd_df['Compounded Return (+)'] = sd_df['Return Per Trade (+)'].cumprod()
        sd_df['Compounded Return (-)'] = sd_df['Return Per Trade (-)'].cumprod()
        sd_df['New Balance (+)'] = [min(dollar_cap/lev, bal*principal_balance) for bal in sd_df['Compounded Return (+)']]
        sd_df['Balance used in Trade (+)'] = np.concatenate([[principal_balance], sd_df['New Balance (+)'].values[:-1]])

        sd_df['New Balance (-)'] = [min(dollar_cap/lev, bal*principal_balance) for bal in sd_df['Compounded Return (-)']]
        sd_df['Balance used in Trade (-)'] = np.concatenate([[principal_balance], sd_df['New Balance (-)'].values[:-1]])

    sd_df['Net P/L Per Trade (+)'] = (sd_df['Return Per Trade (+)']-1)*sd_df['Balance used in Trade (+)']
    sd_df['Cumulative P/L (+)'] = sd_df['Net P/L Per Trade (+)'].cumsum()

    sd_df['Net P/L Per Trade (-)'] = (sd_df['Return Per Trade (-)']-1)*sd_df['Balance used in Trade (-)']
    sd_df['Cumulative P/L (-)'] = sd_df['Net P/L Per Trade (-)'].cumsum()
    return sd_df

def runapp() -> None:
        no_errors = True 
        otimeheader = 'Exit Date'
        fmat = '%Y-%m-%d %H:%M:%S'
        lev_cap = 5
        dollar_cap = 1000000000.00
        
        ct_data = load_data("CT-Trade-Log.csv",otimeheader, fmat)
            
        sb_data = load_data("SB-Trade-Log.csv",otimeheader, fmat)

        cc_lev_cap = 3
        cc_data = load_data("CC-Trade-Log.csv",otimeheader, fmat)
        
        pb_data = load_data("PB-Trade-Log.csv",otimeheader, fmat)


        df = pd.concat([ct_data, sb_data, cc_data, pb_data])
        
        ct_df = ct_data.copy(deep=True)
        sb_df = sb_data.copy(deep=True)
        cc_df = cc_data.copy(deep=True)
        pb_df = pb_data.copy(deep=True)

        dateheader = 'Date'
        theader = 'Time'
        with st.form("user input", ):
            st.header("Choose your settings:")
            if no_errors:
                with st.container():
                    col1, col2, col3 = st.columns(3)
                    with col1:
                        try:
                            startdate = st.date_input("Start Date", value=pd.to_datetime(df[otimeheader]).min())
                        except:
                            st.error("Please select a valid start date.")
                            no_errors = False 
                            
                    with col2:
                        try:
                            enddate = st.date_input("End Date", value=datetime.today())
                        except:
                            st.error("Please select a valid end date.")
                            no_errors = False 
                    with col3: 
                        principal_balance = st.number_input('Starting Balance', min_value=0.00, value=1000.00, max_value= dollar_cap, step=.01)
                    #st.sidebar.subheader("Customize your Dashboard")

                    if no_errors and (enddate < startdate): 
                        st.error("End Date must be later than Start date. Please try again.")
                        no_errors = False 
            if no_errors:
                dca1 = 25; dca2 = 25; dca3 = 25; dca4= 25; dca5=50; dca6=50;
                # st.write("Choose your DCA setup (for Cinnamon Toast trades before 02/07/2023)")
                # with st.container():
                #     col1, col2, col3, col4 = st.columns(4)
                #     with col1: 
                #         dca1 = st.number_input('DCA 1 Allocation', min_value=0, value=25, max_value= 100, step=1)
                #     with col2: 
                #         dca2 = st.number_input('DCA 2 Allocation', min_value=0, value=25, max_value= 100, step=1)
                #     with col3: 
                #         dca3 = st.number_input('DCA 3 Allocation', min_value=0, value=25, max_value= 100, step=1)
                #     with col4: 
                #         dca4 = st.number_input('DCA 4 Allocation', min_value=0, value=25, max_value= 100, step=1)
                # st.write("Choose your DCA setup (for Cinnamon Toast trades on or after 02/07/2023)")
                # with st.container():
                #     col1, col2 = st.columns(2)
                #     with col1: 
                #         dca5 = st.number_input('DCA 1 Allocation', min_value=0, value=50, max_value= 100, step=1)
                #     with col2: 
                #         dca6 = st.number_input('DCA 2 Allocation', min_value=0, value=50, max_value= 100, step=1)

                with st.container(): 
                    col1,col2,col3,col4 = st.columns(4) 
                    with col1:
                        st.write("**Cinnamon Toast (CT)**")
                        ct_lev = st.number_input('CT Leverage', min_value=1, value=1, max_value= lev_cap, step=1)
                        ct_alloc = st.number_input("CT Allocation (%)", min_value=0, value=25, max_value=100, step=1)
                    with col2:
                        st.write("**Short Bread (SB)**")
                        sb_lev = st.number_input('SB Leverage', min_value=1, value=1, max_value= lev_cap, step=1)
                        sb_alloc = st.number_input("SB Allocation (%)", min_value=0, value=25, max_value=100, step=1)
                    with col3: 
                        st.write("**Cosmic Cupcake (CC)**")
                        cc_lev = st.number_input('CC Leverage', min_value=1, value=1, max_value= cc_lev_cap, step=1)
                        cc_alloc = st.number_input("CC Allocation (%)", min_value=0, value=25, max_value=100, step=1)
                    with col4: 
                        st.write("**Pure Bread (PB)**")
                        pb_lev = st.number_input('PB Leverage', min_value=1, value=1, max_value= cc_lev_cap, step=1)
                        pb_alloc = st.number_input("PB Allocation (%)", min_value=0, value=25, max_value=100, step=1)
                        

            #hack way to get button centered 
            c = st.columns(5)
            with c[2]: 
                submitted = st.form_submit_button("Get Cookin'!")           

            if submitted and principal_balance *ct_alloc/100 * ct_lev > dollar_cap:
                ct_lev = np.floor(dollar_cap/(principal_balance*ct_alloc/100))
                st.error(f"WARNING:Allocated balance for Cinnamon Toast exceeds the ${dollar_cap} limit. Using maximum available leverage of {ct_lev}")

            if submitted and principal_balance *sb_alloc/100 * sb_lev > dollar_cap:
                sb_lev = np.floor(dollar_cap/(principal_balance*sb_alloc/100))
                st.error(f"WARNING:Allocated balance for Short Bread exceeds the ${dollar_cap} limit. Using maximum available leverage of {sb_lev}")

            if submitted and principal_balance *cc_alloc/100 * cc_lev > dollar_cap:
                cc_lev = np.floor(cc_dollar_cap/(principal_balance*cc_alloc/100))
                st.error(f"WARNING:Allocated balance for Cosmic Cupcake exceeds the ${dollar_cap} limit. Using maximum available leverage of {cc_lev}")
            
            if submitted and principal_balance *pb_alloc/100 * pb_lev > dollar_cap:
                pb_lev = np.floor(pb_dollar_cap/(principal_balance*pb_alloc/100))
                st.error(f"WARNING:Allocated balance for Pure Bread exceeds the ${dollar_cap} limit. Using maximum available leverage of {pb_lev}")
            
            if submitted and (ct_alloc + sb_alloc + cc_alloc + pb_alloc) > 100: 
                st.error("Invalid allocation amounts. The total allocations must not exceed 100% of available funds. Please check your allocations and try again.")
                no_errors = False 
            if submitted and (ct_alloc + sb_alloc + cc_alloc + pb_alloc) < 100: 
                st.error(f'WARNING: The allocation amounts you have selected do not sum to 100%. Only {ct_alloc + sb_alloc + cc_alloc + pb_alloc}% of the starting balance will be used for trading.')

        if submitted: 
            while no_errors == True:
                df = df[(df[dateheader] >= startdate) & (df[dateheader] <= enddate)]
                ct_df = ct_df[(ct_df[dateheader] >= startdate) & (ct_df[dateheader] <= enddate)]
                sb_df = sb_df[(sb_df[dateheader] >= startdate) & (sb_df[dateheader] <= enddate)]
                cc_df = cc_df[(cc_df[dateheader] >= startdate) & (cc_df[dateheader] <= enddate)]
                pb_df = pb_df[(pb_df[dateheader] >= startdate) & (pb_df[dateheader] <= enddate)]
                if len(df) == 0:
                        st.error("There are no available trades matching your selections. Please try again!")
                        no_errors = False

                ct_df, ct_cum_pl, ct_effective_return = get_pl('ct', ct_df, dca1, dca2, dca3, dca4, dca5, dca6, dollar_cap, ct_lev, principal_balance*ct_alloc/100)
                sb_df, sb_cum_pl, sb_effective_return = get_pl('sb', sb_df, dca1, dca2, dca3, dca4, dca5, dca6, dollar_cap, sb_lev, principal_balance*sb_alloc/100)
                cc_df, cc_cum_pl, cc_effective_return = get_pl('cc', cc_df, dca1, dca2, dca3, dca4, dca5, dca6, dollar_cap, cc_lev, principal_balance*cc_alloc/100)
                pb_df, pb_cum_pl, pb_effective_return = get_pl('pb', pb_df, dca1, dca2, dca3, dca4, dca5, dca6, dollar_cap, pb_lev, principal_balance*pb_alloc/100)


                cum_pl = ct_cum_pl + sb_cum_pl + cc_cum_pl + pb_cum_pl
                effective_return = ct_alloc/100*ct_effective_return + sb_alloc/100*sb_effective_return + cc_alloc/100*cc_effective_return + pb_alloc/100*pb_effective_return

                st.header(f"Bread Basket Results")
                with st.container(): 
                    st.metric(
                        "Total Account Balance",
                        f"${cum_pl:.2f}",
                        f"{100*(cum_pl-principal_balance)/(principal_balance):.2f} %",
                    )
                    col1, col2, col3, col4 = st.columns(4)
                    with col1: 
                        st.metric(
                        "Cinnamon Toast Balance",
                        f"${ct_cum_pl:.2f}",
                        f"{ct_alloc*(ct_cum_pl-principal_balance*ct_alloc/100)/(principal_balance*ct_alloc/100):.2f} %",
                    )
                    with col2: 
                        st.metric(
                        "Short Bread Balance",
                        f"${sb_cum_pl:.2f}",
                        f"{sb_alloc*(sb_cum_pl-principal_balance*sb_alloc/100)/(principal_balance*sb_alloc/100):.2f} %",
                    )
                    with col3: 
                        st.metric(
                        "Cosmic Cupcake Balance",
                        f"${cc_cum_pl:.2f}",
                        f"{cc_alloc*(cc_cum_pl-principal_balance*cc_alloc/100)/(principal_balance*cc_alloc/100):.2f} %",
                    )
                    with col4: 
                        st.metric(
                        "Pure Bread Balance",
                        f"${pb_cum_pl:.2f}",
                        f"{pb_alloc*(pb_cum_pl-principal_balance*pb_alloc/100)/(principal_balance*pb_alloc/100):.2f} %",
                    )

                    ct_df.insert(1, 'Bot', ['CT']*len(ct_df))
                    if ct_df.empty: 
                        grouped_ct = pd.DataFrame([])
                    else: 
                        grouped_ct = ct_df.groupby('Exit Date').agg({'Bot': 'first', 'Signal':'min','Entry Date': 'min','Exit Date': 'max','Buy Price': 'mean',
                             'Sell Price' : 'max',
                             'Net P/L Per Trade': 'mean', 
                             'Return Per Trade': 'mean', 
                             'Calculated Return %' : lambda x: np.round(ct_alloc*ct_lev*x.sum(),2), 
                             'DCA': lambda x: int(np.floor(x.max()))})
                    
                    sb_df.insert(1, 'Bot', ['SB']*len(sb_df))
                    if sb_df.empty: 
                        grouped_sb = pd.DataFrame([])
                    else: 
                        grouped_sb = sb_df.groupby('Exit Date').agg({'Bot': 'first', 'Signal':'min','Entry Date': 'min','Exit Date': 'max','Buy Price': 'mean',
                             'Sell Price' : 'max',
                             'Net P/L Per Trade': 'mean', 
                             'Return Per Trade': 'mean', 
                             'Calculated Return %' : lambda x: np.round(sb_alloc*sb_lev*x.sum(),2)})

                    cc_df.insert(1, 'Bot', ['CC']*len(cc_df))
                    if cc_df.empty: 
                        grouped_cc = pd.DataFrame([])
                    else: 
                        grouped_cc = cc_df.groupby('Exit Date').agg({'Bot': 'first', 'Signal':'min','Entry Date': 'min','Exit Date': 'max','Buy Price': 'mean',
                             'Sell Price' : 'max',
                             'Net P/L Per Trade': 'mean', 
                             'Return Per Trade': 'mean', 
                             'Calculated Return %' : lambda x: np.round(cc_alloc*cc_lev*x.sum(),2)})
                        
                    pb_df.insert(1, 'Bot', ['PB']*len(pb_df))
                    if pb_df.empty: 
                        grouped_pb = pd.DataFrame([])
                    else: 
                        grouped_pb = pb_df.groupby('Exit Date').agg({'Bot': 'first', 'Signal':'min','Entry Date': 'min','Exit Date': 'max','Buy Price': 'mean',
                             'Sell Price' : 'max',
                             'Net P/L Per Trade': 'mean', 
                             'Return Per Trade': 'mean', 
                             'Calculated Return %' : lambda x: np.round(pb_alloc*pb_lev*x.sum(),2)})
                    all_dfs = [grouped_ct, grouped_sb, grouped_cc, grouped_pb]
                    df = pd.concat([d for d in all_dfs if not d.empty])
                    
                    df['Entry Date'] = pd.to_datetime(df['Entry Date'])
                    df['Exit Date'] = pd.to_datetime(df['Exit Date'])
                    df.index = range(len(df))
                    df.sort_values('Exit Date', ascending = True, inplace=True)

                    # Create figure
                    fig = go.Figure()

                    pyLogo = Image.open("logo.png")
                    
                    # Add trace
                    fig.add_trace(
                        go.Scatter(x=df['Exit Date'], y=np.round(df['Net P/L Per Trade'].cumsum().values,2), line_shape='spline', 
                                   line = {'smoothing': 1.0, 'color' : 'rgba(31, 119, 200,.8)'},
                                   name='Cumulative P/L')
                    )
                    dfdata = df[(df['Bot'] != 'CC') & (df['Bot'] != 'PB')]
                    eth_buyhold  = ((ct_alloc + sb_alloc)/100*principal_balance/dfdata['Buy Price'][dfdata.index[0]])*(dfdata['Buy Price']-dfdata['Buy Price'][dfdata.index[0]])
                    fig.add_trace(go.Scatter(x=dfdata['Exit Date'], y=np.round(eth_buyhold.values,2), line_shape='spline', 
                                             line = {'smoothing': 1.0, 'color' :'red'}, name = 'ETH Buy & Hold Return')
                    )
                    dfdata = df[df['Bot'] == 'CC']
                    atom_buyhold  = ((cc_alloc)/100*principal_balance/dfdata['Buy Price'][dfdata.index[0]])*(dfdata['Buy Price']-dfdata['Buy Price'][dfdata.index[0]])
                    fig.add_trace(go.Scatter(x=dfdata['Exit Date'], y=np.round(atom_buyhold.values,2), line_shape='spline', 
                                             line = {'smoothing': 1.0, 'color' :'orange'}, name = 'ATOM Buy & Hold Return')
                    )
                    dfdata = df[df['Bot'] == 'PB']
                    doge_buyhold  = ((pb_alloc)/100*principal_balance/dfdata['Buy Price'][dfdata.index[0]])*(dfdata['Buy Price']-dfdata['Buy Price'][dfdata.index[0]])
                    fig.add_trace(go.Scatter(x=dfdata['Exit Date'], y=np.round(doge_buyhold.values,2), line_shape='spline', 
                                             line = {'smoothing': 1.0, 'color' :'green'}, name = 'DOGE Buy & Hold Return')
                    )

                    fig.add_layout_image(
                            dict(
                                source=pyLogo,
                                xref="paper",
                                yref="paper",
                                x = 0.05, #dfdata['Exit Date'].astype('int64').min() // 10**9, 
                                y = .85, #dfdata['Cumulative P/L'].max(),
                                sizex= .9, #(dfdata['Exit Date'].astype('int64').max() - dfdata['Exit Date'].astype('int64').min()) // 10**9,
                                sizey= .9, #(dfdata['Cumulative P/L'].max() - dfdata['Cumulative P/L'].min()),
                                sizing="contain",
                                opacity=0.2, 
                            layer = "below")
                    )

                    #style layout 
                    fig.update_layout(
                        height = 600,
                        xaxis=dict(
                            title="Exit Date", 
                            tickmode='array',
                        ),
                        yaxis=dict(
                            title="Cumulative P/L"
                        ) ) 

                    st.plotly_chart(fig, theme=None, use_container_width=True,height=600)

                    df['Per Trade Return Rate'] = df['Return Per Trade']-1

                    totals = pd.DataFrame([], columns = ['# of Trades', 'Wins', 'Losses', 'Win Rate', 'Profit Factor'])
                    data = get_hist_info(df, principal_balance,'Per Trade Return Rate')
                    totals.loc[len(totals)] = list(i for i in data)

                    totals['Cum. P/L'] = cum_pl-principal_balance
                    totals['Cum. P/L (%)'] = 100*(cum_pl-principal_balance)/principal_balance

                    if df.empty:
                        st.error("Oops! None of the data provided matches your selection(s). Please try again.")
                    else:
                        with st.container():
                            for row in totals.itertuples():
                                col1, col2, col3, col4= st.columns(4)
                                c1, c2, c3, c4 = st.columns(4)
                                with col1:
                                    st.metric(
                                        "Total Trades",
                                        f"{row._1:.0f}",
                                    )
                                with c1:
                                    st.metric(
                                        "Profit Factor",
                                        f"{row._5:.2f}",
                                    )
                                with col2: 
                                    st.metric(
                                        "Wins",
                                        f"{row.Wins:.0f}",
                                    )
                                with c2:
                                    st.metric(
                                        "Cumulative P/L",
                                        f"${row._6:.2f}",
                                        f"{row._7:.2f} %",
                                    )
                                with col3: 
                                    st.metric(
                                        "Losses",
                                        f"{row.Losses:.0f}",
                                    )
                                with c3:
                                    st.metric(
                                    "Rolling 7 Days",
                                        "",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}",
                                        f"{get_rolling_stats(df,1, otimeheader, 7):.2f}%",
                                    )
                                    st.metric(
                                    "Rolling 30 Days",
                                        "",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}",
                                        f"{get_rolling_stats(df,1, otimeheader, 30):.2f}%",
                                    )

                                with col4: 
                                    st.metric(
                                        "Win Rate",
                                        f"{row._4:.1f}%",
                                    )
                                with c4:
                                    st.metric(
                                    "Rolling 90 Days",
                                        "",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}",
                                        f"{get_rolling_stats(df,1, otimeheader, 90):.2f}%",
                                    )
                                    st.metric(
                                    "Rolling 180 Days",
                                        "",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}",
                                        f"{get_rolling_stats(df,1, otimeheader, 180):.2f}%",
                                    )
                    df.rename(columns={'DCA' : '# of DCAs', 'Buy Price':'Avg. Buy Price', 'Sell Price': 'Avg. Sell Price',
                    'Net P/L Per Trade':'Net P/L', 
                    'Calculated Return %':'P/L %'}, inplace=True)
                    if '# of DCAs' in df.columns: 
                        df['# of DCAs'] = df['# of DCAs'].fillna(1.0)
                        df['# of DCAs'] = [int(i) for i in df['# of DCAs'].values]
                    else: 
                        df['# of DCAs'] = np.ones(len(df))
                    df.sort_values('Entry Date', ascending = True, inplace=True)
                    df.insert(0,'Trade',np.arange(1, len(df)+1))
                    df.index = range(len(df))
                    df = df.drop('Per Trade Return Rate', axis=1)
                    df = df.drop('Return Per Trade', axis=1)
                    
                    st.subheader("Trade Logs")
                    st.dataframe(df.style.format({'Entry Date':'{:%m-%d-%Y %H:%M:%S}','Exit Date':'{:%m-%d-%Y %H:%M:%S}','Avg. Buy Price': conditional_formatter, 'Avg. Sell Price': conditional_formatter, 'Net P/L':'${:.2f}', 'P/L %':'{:.2f}%'})\
                    .apply(cc_coding, axis=1)\
                    .applymap(my_style,subset=['Net P/L'])\
                    .applymap(my_style,subset=['P/L %']), use_container_width=True)
                    # new_title = '<div style="text-align: right;"><span style="background-color:lightgrey;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</span> Not Live Traded</div>'
                    # st.markdown(new_title, unsafe_allow_html=True)

                    no_errors = False
if __name__ == "__main__":
    st.set_page_config(
        "Bread Basket Dashboard",
        layout="wide",
    )
    runapp()
# -