File size: 29,936 Bytes
340ed9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36f4651
340ed9d
 
 
 
 
 
 
 
 
 
36f4651
340ed9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36f4651
340ed9d
 
 
 
36f4651
340ed9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36f4651
340ed9d
 
 
 
 
36f4651
340ed9d
 
 
 
 
 
 
 
 
 
 
36f4651
340ed9d
 
 
 
 
 
 
 
 
 
 
 
 
 
36f4651
340ed9d
 
 
 
 
36f4651
340ed9d
 
 
 
 
 
 
 
 
 
36f4651
 
 
340ed9d
32155a7
 
 
 
 
 
c99b709
bc7f45a
340ed9d
bc7f45a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faf2f8b
bc7f45a
faf2f8b
36f4651
bc7f45a
 
 
 
 
 
36f4651
 
 
 
340ed9d
 
 
bc7f45a
 
340ed9d
bc7f45a
 
340ed9d
bc7f45a
 
 
340ed9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3946baa
2a9b612
36f4651
2a9b612
36f4651
 
 
 
2a9b612
 
36f4651
 
 
 
 
340ed9d
 
 
 
 
 
 
 
 
 
 
 
c2a208e
340ed9d
faf2f8b
36f4651
c2a208e
36f4651
faf2f8b
340ed9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36f4651
 
340ed9d
36f4651
340ed9d
 
 
 
 
 
 
 
 
 
 
 
 
fd72449
340ed9d
 
 
 
 
 
 
36f4651
 
340ed9d
 
36f4651
340ed9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36f4651
bc7f45a
340ed9d
 
 
 
 
bc7f45a
 
 
 
 
 
340ed9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc7f45a
 
340ed9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36f4651
340ed9d
 
 
 
 
 
 
36f4651
 
 
340ed9d
 
 
 
 
 
 
 
36f4651
 
340ed9d
 
 
 
 
 
 
 
 
36f4651
340ed9d
 
 
36f4651
 
 
340ed9d
 
 
 
 
 
 
 
 
36f4651
 
 
340ed9d
 
36f4651
 
 
340ed9d
 
af5898f
 
 
 
 
 
 
 
 
 
340ed9d
af5898f
 
 
 
 
36f4651
af5898f
 
340ed9d
 
 
799041f
b31e0dc
36f4651
 
 
b31e0dc
36f4651
 
 
340ed9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
# ---
# jupyter:
#   jupytext:
#     text_representation:
#       extension: .py
#       format_name: light
#       format_version: '1.5'
#       jupytext_version: 1.14.2
#   kernelspec:
#     display_name: Python [conda env:bbytes] *
#     language: python
#     name: conda-env-bbytes-py
# ---

# +
import csv 
import pandas as pd
from datetime import datetime, timedelta
import numpy as np
import datetime as dt
import matplotlib.pyplot as plt
from pathlib import Path
import time
import plotly.graph_objects as go
import plotly.io as pio
from PIL import Image

import streamlit as st
import plotly.express as px
import altair as alt
import dateutil.parser
from  matplotlib.colors import LinearSegmentedColormap


# +
class color:
    PURPLE = '\033[95m'
    CYAN = '\033[96m'
    DARKCYAN = '\033[36m'
    BLUE = '\033[94m'
    GREEN = '\033[92m'
    YELLOW = '\033[93m'
    RED = '\033[91m'
    BOLD = '\033[1m'
    UNDERLINE = '\033[4m'
    END = '\033[0m'
    
@st.cache_data    
def print_PL(amnt, thresh, extras = "" ):
    if amnt > 0:
        return color.BOLD + color.GREEN + str(amnt) + extras + color.END
    elif amnt < 0:
        return color.BOLD + color.RED + str(amnt)+ extras + color.END
    elif np.isnan(amnt):
        return str(np.nan)
    else:
        return str(amnt + extras)
    
@st.cache_data      
def get_headers(logtype):
    otimeheader = ""
    cheader = ""
    plheader = ""
    fmat = '%Y-%m-%d %H:%M:%S'
    
    if logtype == "ByBit":
        otimeheader = 'Create Time'
        cheader = 'Contracts'
        plheader = 'Closed P&L'
        fmat = '%Y-%m-%d %H:%M:%S'
        
    if logtype == "BitGet":
        otimeheader = 'Date'
        cheader = 'Futures'
        plheader = 'Realized P/L'
        fmat = '%Y-%m-%d %H:%M:%S'  
        
    if logtype == "MEXC":
        otimeheader = 'Trade time'
        cheader = 'Futures'
        plheader = 'closing position'
        fmat = '%Y/%m/%d %H:%M'
        
    if logtype == "Binance":
        otimeheader = 'Date'
        cheader = 'Symbol'
        plheader = 'Realized Profit'
        fmat = '%Y-%m-%d %H:%M:%S'
        
    #if logtype == "Kucoin":
    #    otimeheader = 'Time'
    #    cheader = 'Contract'
    #    plheader = ''
    #    fmat = '%Y/%m/%d %H:%M:%S' 

        
    if logtype == "Kraken":
        otimeheader = 'time'
        cheader = 'asset'
        plheader = 'amount'
        fmat = '%Y-%m-%d %H:%M:%S.%f'  
        
    if logtype == "OkX":
        otimeheader = '\ufeffOrder Time'
        cheader = '\ufeffInstrument'
        plheader = '\ufeffPL'
        fmat = '%Y-%m-%d %H:%M:%S'        
    
    return otimeheader.lower(), cheader.lower(), plheader.lower(), fmat
    
@st.cache_data    
def get_coin_info(df_coin, principal_balance,plheader):
    numtrades = int(len(df_coin))
    numwin = int(sum(df_coin[plheader] > 0))
    numloss = int(sum(df_coin[plheader] < 0))
    winrate = np.round(100*numwin/numtrades,4)
    
    grosswin = sum(df_coin[df_coin[plheader] > 0][plheader])
    grossloss = sum(df_coin[df_coin[plheader] < 0][plheader])
    if grossloss != 0:
        pfactor = -1*np.round(grosswin/grossloss,2)
    else: 
        pfactor = np.nan
    
    cum_PL = np.round(sum(df_coin[plheader].values),2)
    cum_PL_perc = np.round(100*cum_PL/principal_balance,2)
    mean_PL = np.round(sum(df_coin[plheader].values/len(df_coin)),2)
    mean_PL_perc = np.round(100*mean_PL/principal_balance,2)
    
    return numtrades, numwin, numloss, winrate, pfactor, cum_PL, cum_PL_perc, mean_PL, mean_PL_perc

@st.cache_data  
def get_hist_info(df_coin, principal_balance,plheader):
    numtrades = int(len(df_coin))
    numwin = int(sum(df_coin[plheader] > 0))
    numloss = int(sum(df_coin[plheader] < 0))
    if numtrades != 0:
        winrate = np.round(100*numwin/numtrades,4)
    else: 
        winrate = np.nan
    
    grosswin = sum(df_coin[df_coin[plheader] > 0][plheader])
    grossloss = sum(df_coin[df_coin[plheader] < 0][plheader])
    if grossloss != 0:
        pfactor = -1*np.round(grosswin/grossloss,2)
    else: 
        pfactor = np.nan
    return numtrades, numwin, numloss, winrate, pfactor

@st.cache_data  
def get_rolling_stats(df, lev, otimeheader, days):
    max_roll = (df[otimeheader].max() - df[otimeheader].min()).days
    
    if max_roll >= days:
        rollend = df[otimeheader].max()-timedelta(days=days)
        rolling_df = df[df[otimeheader] >= rollend]

        if len(rolling_df) > 0:
            rolling_perc = rolling_df['Return Per Trade'].dropna().cumprod().values[-1]-1
        else: 
            rolling_perc = np.nan
    else:
        rolling_perc = np.nan
    return 100*rolling_perc
@st.cache_data  
def cc_coding(row):
    return ['background-color: lightgrey'] * len(row) if row['Exit Date'] <= datetime.strptime('2022-12-16 00:00:00','%Y-%m-%d %H:%M:%S').date() else [''] * len(row)
def ctt_coding(row):
    return ['background-color: lightgrey'] * len(row) if row['Exit Date'] <= datetime.strptime('2023-01-02 00:00:00','%Y-%m-%d %H:%M:%S').date() else [''] * len(row)

@st.cache_data
def my_style(v, props=''):
    props = 'color:red' if v < 0 else 'color:green'
    return props

def filt_df(df, cheader, symbol_selections):
    
    df = df.copy()
    df = df[df[cheader].isin(symbol_selections)]

    return df
def drop_frac_cents(d):
    D = np.floor(100*d)/100
    return D
def load_data(filename, account, exchange, otimeheader, fmat):
    cols1 = ['id','datetime', 'exchange', 'subaccount', 'pair', 'side', 'action', 'amount', 'price', 'errors']
    cols2 = ['id','datetime', 'exchange', 'subaccount', 'pair', 'side', 'action', 'amount', 'price', 'errors', 'P/L', 'P/L %','exit price', 'Lev']
    old_df = pd.read_csv("history-old.csv", header = 0, names= cols1)
    df = pd.read_csv(filename, header = 0, names= cols2)
    df.loc[df['exit price'] > 0, 'price'] = df.loc[df['exit price'] > 0, 'exit price']
    
    df = pd.concat([old_df, df], ignore_index=True)
    
    filtdf = df[(df.exchange == exchange) & (df.subaccount == account)].dropna()
    
    if not filtdf.empty:
        filtdf = filtdf.sort_values('datetime')
        filtdf = filtdf.iloc[np.where(filtdf.action == 'open')[0][0]:, :] #get first open signal in dataframe

        tnum = 0
        dca = 0
        newdf = pd.DataFrame([], columns=['Trade','Signal','Entry Date','Buy Price', 'Sell Price','Exit Date', 'P/L per token', 'P/L %'])
        for index, row in filtdf.iterrows(): 
            if row.action == 'open':
                dca += 1 
                tnum += 1 
                sig = 'Long' if row.side == 'buy' else 'Short'
                temp = pd.DataFrame({'Trade' :[tnum], 'Signal': [sig], 'Entry Date':[row.datetime],'Buy Price': [row.price], 'Sell Price': [np.nan],'Exit Date': [np.nan], 'P/L per token': [np.nan], 'P/L %': [np.nan], 'DCA': [dca]})
                newdf = pd.concat([newdf,temp], ignore_index = True)
            if row.action == 'close':
                for j in np.arange(tnum-1, tnum-dca-1,-1):
                    newdf.loc[j,'Sell Price'] = row.price 
                    newdf.loc[j,'Exit Date'] = row.datetime
                dca = 0 

        newdf['Buy Price'] = pd.to_numeric(newdf['Buy Price'])
        newdf['Sell Price'] = pd.to_numeric(newdf['Sell Price'])

        newdf['P/L per token'] = newdf['Sell Price'] - newdf['Buy Price']
        newdf['P/L %'] = 100*newdf['P/L per token']/newdf['Buy Price']
        newdf = newdf.dropna()
    else: 
        newdf = pd.DataFrame([], columns=['Trade','Signal','Entry Date','Buy Price', 'Sell Price','Exit Date', 'P/L per token', 'P/L %'])
    
    if account == 'Pure Bread (ByBit)':
        tvdata = pd.read_csv('pb-history-old.csv',header = 0).drop('Unnamed: 0', axis=1)
    elif account == 'PUMPernickel (ByBit)':
        tvdata = pd.read_csv('pn-history-old.csv',header = 0).drop('Unnamed: 0', axis=1)
    else:
        tvdata = pd.DataFrame([])
    if tvdata.empty:
        df = newdf
    else:
        df = pd.concat([tvdata, newdf], ignore_index =True)
    df = df.sort_values('Entry Date', ascending = True)
    df.index = range(len(df))
    df.Trade = df.index + 1 
        
    dateheader = 'Date'
    theader = 'Time'

    df[dateheader] = [tradetimes.split(" ")[0] for tradetimes in df[otimeheader].values]
    df[theader] = [tradetimes.split(" ")[1] for tradetimes in df[otimeheader].values]
    
    df[otimeheader] = pd.to_datetime(df[otimeheader])
    df['Exit Date'] = pd.to_datetime(df['Exit Date'])
    
    df[dateheader] = [dateutil.parser.parse(date).date() for date in df[dateheader]]
    df[theader] = [dateutil.parser.parse(time).time() for time in df[theader]]
    return df

def get_sd_df(sd_df, sd, bot_selections, dca1, dca2, dca3, dca4, dca5, dca6, fees, lev, dollar_cap, principal_balance):
    sd = 2*.00026
    # ------ Standard Dev. Calculations. 
    if bot_selections == "Cinnamon Toast":
        dca_map = {1: dca1/100, 2: dca2/100, 3: dca3/100, 4: dca4/100, 1.1: dca5/100, 2.1: dca6/100}
        sd_df['DCA %'] = sd_df['DCA'].map(dca_map)
        sd_df['Calculated Return % (+)'] = df['Signal'].map(signal_map)*(df['DCA %'])*(1-fees)*((df['Sell Price']*(1+df['Signal'].map(signal_map)*sd) - df['Buy Price']*(1-df['Signal'].map(signal_map)*sd))/df['Buy Price']*(1-df['Signal'].map(signal_map)*sd) - fees) #accounts for fees on open and close of trade 
        sd_df['Calculated Return % (-)'] = df['Signal'].map(signal_map)*(df['DCA %'])*(1-fees)*((df['Sell Price']*(1-df['Signal'].map(signal_map)*sd)-df['Buy Price']*(1+df['Signal'].map(signal_map)*sd))/df['Buy Price']*(1+df['Signal'].map(signal_map)*sd) - fees) #accounts for fees on open and close of trade 
        sd_df['DCA'] = np.floor(sd_df['DCA'].values)

        sd_df['Return Per Trade (+)'] = np.nan
        sd_df['Return Per Trade (-)'] = np.nan
        sd_df['Balance used in Trade (+)'] = np.nan
        sd_df['Balance used in Trade (-)'] = np.nan
        sd_df['New Balance (+)'] = np.nan
        sd_df['New Balance (-)'] = np.nan

        g1 = sd_df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return % (+)'].reset_index(name='Return Per Trade (+)')
        g2 = sd_df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return % (-)'].reset_index(name='Return Per Trade (-)')
        sd_df.loc[sd_df['DCA']==1.0,'Return Per Trade (+)'] = 1+lev*g1['Return Per Trade (+)'].values
        sd_df.loc[sd_df['DCA']==1.0,'Return Per Trade (-)'] = 1+lev*g2['Return Per Trade (-)'].values

        sd_df['Compounded Return (+)'] = sd_df['Return Per Trade (+)'].cumprod()
        sd_df['Compounded Return (-)'] = sd_df['Return Per Trade (-)'].cumprod()
        sd_df.loc[sd_df['DCA']==1.0,'New Balance (+)'] = [min(dollar_cap/lev, bal*principal_balance) for bal in sd_df.loc[sd_df['DCA']==1.0,'Compounded Return (+)']]
        sd_df.loc[sd_df['DCA']==1.0,'Balance used in Trade (+)'] = np.concatenate([[principal_balance], sd_df.loc[sd_df['DCA']==1.0,'New Balance (+)'].values[:-1]])

        sd_df.loc[sd_df['DCA']==1.0,'New Balance (-)'] = [min(dollar_cap/lev, bal*principal_balance) for bal in sd_df.loc[sd_df['DCA']==1.0,'Compounded Return (-)']]
        sd_df.loc[sd_df['DCA']==1.0,'Balance used in Trade (-)'] = np.concatenate([[principal_balance], sd_df.loc[sd_df['DCA']==1.0,'New Balance (-)'].values[:-1]])
    else: 
        sd_df['Calculated Return % (+)'] = df['Signal'].map(signal_map)*(1-fees)*((df['Sell Price']*(1+df['Signal'].map(signal_map)*sd) - df['Buy Price']*(1-df['Signal'].map(signal_map)*sd))/df['Buy Price']*(1-df['Signal'].map(signal_map)*sd) - fees) #accounts for fees on open and close of trade 
        sd_df['Calculated Return % (-)'] = df['Signal'].map(signal_map)*(1-fees)*((df['Sell Price']*(1-df['Signal'].map(signal_map)*sd)-df['Buy Price']*(1+df['Signal'].map(signal_map)*sd))/df['Buy Price']*(1+df['Signal'].map(signal_map)*sd) - fees) #accounts for fees on open and close of trade 
        sd_df['Return Per Trade (+)'] = np.nan
        sd_df['Return Per Trade (-)'] = np.nan

        g1 = sd_df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return % (+)'].reset_index(name='Return Per Trade (+)')
        g2 = sd_df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return % (-)'].reset_index(name='Return Per Trade (-)')
        sd_df['Return Per Trade (+)'] = 1+lev*g1['Return Per Trade (+)'].values
        sd_df['Return Per Trade (-)'] = 1+lev*g2['Return Per Trade (-)'].values

        sd_df['Compounded Return (+)'] = sd_df['Return Per Trade (+)'].cumprod()
        sd_df['Compounded Return (-)'] = sd_df['Return Per Trade (-)'].cumprod()
        sd_df['New Balance (+)'] = [min(dollar_cap/lev, bal*principal_balance) for bal in sd_df['Compounded Return (+)']]
        sd_df['Balance used in Trade (+)'] = np.concatenate([[principal_balance], sd_df['New Balance (+)'].values[:-1]])

        sd_df['New Balance (-)'] = [min(dollar_cap/lev, bal*principal_balance) for bal in sd_df['Compounded Return (-)']]
        sd_df['Balance used in Trade (-)'] = np.concatenate([[principal_balance], sd_df['New Balance (-)'].values[:-1]])

    sd_df['Net P/L Per Trade (+)'] = (sd_df['Return Per Trade (+)']-1)*sd_df['Balance used in Trade (+)']
    sd_df['Cumulative P/L (+)'] = sd_df['Net P/L Per Trade (+)'].cumsum()

    sd_df['Net P/L Per Trade (-)'] = (sd_df['Return Per Trade (-)']-1)*sd_df['Balance used in Trade (-)']
    sd_df['Cumulative P/L (-)'] = sd_df['Net P/L Per Trade (-)'].cumsum()
    return sd_df

@st.cache_data  
def get_account_drawdown(trades, principal_balance):
    max_draw_perc = 0.00
    beg = 0 
    trades = np.hstack([0.0, trades.dropna().values]) + principal_balance
    if len(trades) > 2:
        for ind in range(len(trades)-1):
            delta = 100*(trades[ind+1:] - trades[ind])/trades[ind]
            max_draw_perc = min(max_draw_perc, delta.min())
    else: 
        max_draw = min(max_draw, trades)
        max_draw_perc = 100*max_draw/(principal_balance)
    return max_draw_perc 
    
def runapp() -> None:
            bot_selections = "Pumpernickel"
            otimeheader = 'Exit Date'
            fmat = '%Y-%m-%d %H:%M:%S'
            fees = .075/100
    
            #st.header(f"{bot_selections} Performance Dashboard :bread: :moneybag:")
            no_errors = True
            #st.write("Welcome to the Trading Bot Dashboard by BreadBytes! You can use this dashboard to track " +
            #     "the performance of our trading bots.")

            if bot_selections == "Pumpernickel":
                lev_cap = 2
                dollar_cap = 1000000000.00
                data = load_data('history.csv', 'PUMPernickel (ByBit)', 'Bybit Futures', otimeheader, fmat)
            if bot_selections == "Pure Bread":
                lev_cap = 3
                dollar_cap = 1000000000.00
                data = load_data('history.csv', 'Pure Bread (ByBit)', 'Bybit Futures', otimeheader, fmat)
            df = data.copy(deep=True)

            dateheader = 'Date'
            theader = 'Time'
            
            #st.subheader("Choose your settings:")
            with st.form("user input", ):
                if no_errors:
                    with st.container():
                        col1, col2 = st.columns(2)
                        with col1:
                            try:
                                startdate = st.date_input("Start Date", value=pd.to_datetime(df[otimeheader]).min())
                            except:
                                st.error("Please select your exchange or upload a supported trade log file.")
                                no_errors = False 
                        with col2:
                            try:
                                enddate = st.date_input("End Date", value=datetime.today())
                            except:
                                st.error("Please select your exchange or upload a supported trade log file.")
                                no_errors = False 
                        #st.sidebar.subheader("Customize your Dashboard")

                        if no_errors and (enddate < startdate): 
                            st.error("End Date must be later than Start date. Please try again.")
                            no_errors = False 
                    with st.container(): 
                        col1,col2 = st.columns(2) 
                        with col2:
                            lev = st.number_input('Leverage', min_value=1, value=1, max_value= lev_cap, step=1)
                        with col1:
                            principal_balance = st.number_input('Starting Balance', min_value=0.00, value=1000.00, max_value= dollar_cap, step=.01)

                #hack way to get button centered 
                c = st.columns(9)
                with c[4]: 
                    submitted = st.form_submit_button("Get Cookin'!")           
            signal_map = {'Long': 1, 'Short':-1}  
            if submitted and principal_balance * lev > dollar_cap:
                lev = np.floor(dollar_cap/principal_balance)
                st.error(f"WARNING: (Starting Balance)*(Leverage) exceeds the ${dollar_cap} limit. Using maximum available leverage of {lev}")

            df = df[(df[dateheader] >= startdate) & (df[dateheader] <= enddate)]

            if submitted and len(df) == 0:
                    st.error("There are no available trades matching your selections. Please try again!")
                    no_errors = False

            if no_errors:
                if bot_selections == "Pumpernickel":
                    dca_map = {1: 1/5, 2: 1/5, 3: 1/5, 4: 1/5, 5: 1/5} #for unequal dca amounts
                    signal_map = {'Long': 1, 'Short':-1}  
                    df['DCA %'] = df['DCA'].map(dca_map)
                    df['Calculated Return %'] = (df['DCA %'])*(df['Signal'].map(signal_map)*(df['Sell Price']-df['Buy Price'])/df['Buy Price']-2*fees) #accounts for fees on open and close of trade 
                    df['DCA'] = np.floor(df['DCA'].values)

                    df['Return Per Trade'] = np.nan
                    df['Balance used in Trade'] = np.nan
                    df['New Balance'] = np.nan

                    g = df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return %'].reset_index(name='Return Per Trade')
                    df.loc[df['DCA']==1.0,'Return Per Trade'] = 1+lev*g['Return Per Trade'].values

                    df['Compounded Return'] = df['Return Per Trade'].cumprod()
                    df.loc[df['DCA']==1.0,'New Balance'] = [min(dollar_cap/lev, bal*principal_balance) for bal in df.loc[df['DCA']==1.0,'Compounded Return']]
                    df.loc[df['DCA']==1.0,'Balance used in Trade'] = np.concatenate([[principal_balance], df.loc[df['DCA']==1.0,'New Balance'].values[:-1]])
                else: 
                    df['Calculated Return %'] = (df['Signal'].map(signal_map)*(df['Sell Price']-df['Buy Price'])/df['Buy Price'])-2*fees #accounts for fees on open and close of trade 
                    df['Return Per Trade'] = np.nan
                    g = df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return %'].reset_index(name='Return Per Trade')
                    df['Return Per Trade'] = 1+lev*g['Return Per Trade'].values

                    df['Compounded Return'] = df['Return Per Trade'].cumprod()
                    df['New Balance'] = [min(dollar_cap/lev, bal*principal_balance) for bal in df['Compounded Return']]
                    df['Balance used in Trade'] = np.concatenate([[principal_balance], df['New Balance'].values[:-1]])
                
                df['Net P/L Per Trade'] = drop_frac_cents((df['Return Per Trade']-1)*df['Balance used in Trade'])
                df['Cumulative P/L'] = df['Net P/L Per Trade'].cumsum()

                max_draw = get_account_drawdown(df['Cumulative P/L'], principal_balance)
                cum_pl = df.loc[df.dropna().index[-1],'Cumulative P/L'] + principal_balance

                effective_return = 100*((cum_pl - principal_balance)/principal_balance)
                 
                #st.header(f"{bot_selections} Results")
                with st.container(): 

                    if len(bot_selections) > 1:
                        col1, col2 = st.columns(2)
                        with col1: 
                            st.metric(
                                "Total Account Balance",
                                f"${cum_pl:.2f}",
                                f"{100*(cum_pl-principal_balance)/(principal_balance):.2f} %",
                            )
                                
                dfdata = df.dropna()

                # Create figure
                fig = go.Figure()

                pyLogo = Image.open("logo.png")

#                     fig.add_traces(go.Scatter(x=sd_df['Exit Date'], y = sd_df['Cumulative P/L (+)'],line_shape='spline',
#                              line = dict(smoothing = 1.3, color='rgba(31, 119, 200,0)'),  showlegend = False)
#                                   )

#                     fig.add_traces(go.Scatter(x=sd_df['Exit Date'], y = sd_df['Cumulative P/L (-)'],
#                              line = dict(smoothing = 1.3, color='rgba(31, 119, 200,0)'), line_shape='spline',
#                              fill='tonexty', 
#                              fillcolor = 'rgba(31, 119, 200,.2)', name = '+/- Standard Deviation')
#                                  )

                # Add trace
                fig.add_trace(
                    go.Scatter(x=dfdata['Exit Date'], y=np.round(dfdata['Cumulative P/L'].values,2), line_shape='spline', 
                               line = {'smoothing': .7, 'color' : 'rgba(90, 223, 137, 1)'},
                               name='P/L')
                )
                buyhold  = (principal_balance/dfdata['Buy Price'][dfdata.index[0]])*(dfdata['Buy Price']-dfdata['Buy Price'][dfdata.index[0]])
                fig.add_trace(go.Scatter(x=dfdata['Exit Date'], y=np.round(buyhold.values,2), line_shape='spline', 
                                         line = {'smoothing': .7, 'color' :'rgba(33, 212, 225, 1)'}, name = 'Buy & Hold')
                )
                img_width = 2001
                img_height = 622
                fig.add_layout_image(
                        dict(
                            source=pyLogo,
                            xref="paper",
                            yref="paper",
                            x = 0.1, 
                            y = 1, 
                            xanchor ="left", yanchor = "top",
                            sizex= 1, 
                            sizey= 1,
                            opacity=0.2, 
                        layer = "below")
                )

                #style layout 
                fig.update_layout(
                    height = 550,
                    xaxis=dict(
                        title="Exit Date", 
                        tickmode='array',
                        showgrid=False
                    ),
                    yaxis=dict(
                        title="Cumulative P/L",
                        showgrid=False
                    ), 
                    legend=dict(
                    x=.05,
                    y=0.95,
                    traceorder="normal"
                    ),
                    plot_bgcolor = 'rgba(10, 10, 10, 1)'
                ) 

                st.plotly_chart(fig, theme=None, use_container_width=True, height=550)
                st.write()
                df['Per Trade Return Rate'] = df['Return Per Trade']-1

                totals = pd.DataFrame([], columns = ['# of Trades', 'Wins', 'Losses', 'Win Rate', 'Profit Factor'])
                data = get_hist_info(df.dropna(), principal_balance,'Per Trade Return Rate')
                totals.loc[len(totals)] = list(i for i in data)

                totals['Cum. P/L'] = cum_pl-principal_balance
                totals['Cum. P/L (%)'] = 100*(cum_pl-principal_balance)/principal_balance

                if df.empty:
                    st.error("Oops! None of the data provided matches your selection(s). Please try again.")
                else:
                    with st.container():
                        for row in totals.itertuples():
                            c1, c2, c3, c4 = st.columns(4)
                            col1, col2, col3, col4 = st.columns(4)
                            with col1:
                                st.metric(
                                    "Total Trades",
                                    f"{row._1:.0f}",
                                )
                            with c1:
                                st.metric(
                                    "Cumulative P/L",
                                    f"${row._6:.2f}",
                                    f"{row._7:.2f} %",
                                )
                            with col2: 
                                st.metric(
                                    "Wins",
                                    f"{row.Wins:.0f}",
                                )
                            with c2:
                                st.metric(
                                    "Profit Factor",
                                    f"{row._5:.2f}",
                                )
                            with col3: 
                                st.metric(
                                    "Losses",
                                    f"{row.Losses:.0f}",
                                )
                            with c3:
                                st.metric(
                                "Rolling 7 Days",
                                    "",#f"{(1+get_rolling_stats(df,lev, otimeheader, 7)/100)*principal_balance:.2f}",
                                    f"{get_rolling_stats(df,lev, otimeheader, 7):.2f}%",
                                )
                                st.metric(
                                "Rolling 90 Days",
                                    "",#f"{(1+get_rolling_stats(df,lev, otimeheader, 30)/100)*principal_balance:.2f}",
                                    f"{get_rolling_stats(df,lev, otimeheader, 90):.2f}%",
                                )

                            with col4: 
                                st.metric(
                                    "Win Rate",
                                    f"{row._4:.1f}%",
                                )
                            with c4:
                                st.metric(
                                "Rolling 30 Days",
                                    "",#f"{(1+get_rolling_stats(df,lev, otimeheader, 90)/100)*principal_balance:.2f}",
                                    f"{get_rolling_stats(df,lev, otimeheader, 30):.2f}%",
                                )
                                st.metric(
                                "Max Drawdown",
                                    "",#f"{np.round(100*max_draw/principal_balance,2)/100*principal_balance:.2f}",
                                    f"{np.round(max_draw,2)}%",
                                )

            if bot_selections == "Pumpernickel":                  
                grouped_df = df.groupby('Exit Date').agg({'Signal':'min','Entry Date': 'min','Exit Date': 'max','Buy Price': 'mean',
                                         'Sell Price' : 'max',
                                         'Net P/L Per Trade': 'mean', 
                                         'Calculated Return %' : lambda x: np.round(100*lev*x.sum(),2), 
                                         'DCA': lambda x: int(np.floor(x.max()))})
                grouped_df.index = range(1, len(grouped_df)+1)
                grouped_df.rename(columns={'DCA' : '# of DCAs', 'Buy Price':'Avg. Buy Price',
                                           'Net P/L Per Trade':'Net P/L', 
                                           'Calculated Return %':'P/L %'}, inplace=True)
            else: 
                grouped_df = df.groupby('Exit Date').agg({'Signal':'min','Entry Date': 'min','Exit Date': 'max','Buy Price': 'mean',
                                         'Sell Price' : 'max',
                                         'Net P/L Per Trade': 'mean', 
                                         'Calculated Return %' : lambda x: np.round(100*lev*x.sum(),2)})
                grouped_df.index = range(1, len(grouped_df)+1)
                grouped_df.rename(columns={'Buy Price':'Buy Price',
                                           'Net P/L Per Trade':'Net P/L', 
                                           'Calculated Return %':'P/L %'}, inplace=True)        
            st.subheader("Trade Logs")
            grouped_df['Entry Date'] = pd.to_datetime(grouped_df['Entry Date'])
            grouped_df['Exit Date'] = pd.to_datetime(grouped_df['Exit Date'])
            if bot_selections == "Pure Bread":  
                st.dataframe(grouped_df.style.format({'Entry Date':'{:%m-%d-%Y %H:%M:%S}','Exit Date':'{:%m-%d-%Y %H:%M:%S}','Buy Price': '${:.5f}', 'Sell Price': '${:.5f}', 'Net P/L':'${:.2f}', 'P/L %':'{:.2f}%'})\
                .applymap(my_style,subset=['Net P/L'])\
                .applymap(my_style,subset=['P/L %']), use_container_width=True)
            else: 
                st.dataframe(grouped_df.style.format({'Entry Date':'{:%m-%d-%Y %H:%M:%S}','Exit Date':'{:%m-%d-%Y %H:%M:%S}','Avg. Buy Price': '${:.2f}', 'Sell Price': '${:.2f}', 'Net P/L':'${:.2f}', 'P/L %':'{:.2f}%'})\
                .applymap(my_style,subset=['Net P/L'])\
                .applymap(my_style,subset=['P/L %']), use_container_width=True)
                
                
#             st.subheader("Checking Status")
#             if submitted:
#                 st.dataframe(sd_df)
                                
if __name__ == "__main__":
    st.set_page_config(
        "Trading Bot Dashboard", layout = 'wide'
    )
    runapp()
# -