Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,857 Bytes
42f2c22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# //
# // Licensed under the Apache License, Version 2.0 (the "License");
# // you may not use this file except in compliance with the License.
# // You may obtain a copy of the License at
# //
# // http://www.apache.org/licenses/LICENSE-2.0
# //
# // Unless required by applicable law or agreed to in writing, software
# // distributed under the License is distributed on an "AS IS" BASIS,
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# // See the License for the specific language governing permissions and
# // limitations under the License.
import math
from contextlib import contextmanager
from typing import List, Optional, Union
import torch
import torch.distributed as dist
import torch.nn.functional as F
from diffusers.models.normalization import RMSNorm
from einops import rearrange
from torch import Tensor, nn
from torch.nn import Conv3d
from common.distributed.advanced import (
get_next_sequence_parallel_rank,
get_prev_sequence_parallel_rank,
get_sequence_parallel_group,
get_sequence_parallel_rank,
get_sequence_parallel_world_size,
)
from common.logger import get_logger
from models.video_vae_v3.modules.context_parallel_lib import cache_send_recv, get_cache_size
from models.video_vae_v3.modules.global_config import get_norm_limit
from models.video_vae_v3.modules.types import MemoryState, _inflation_mode_t, _memory_device_t
logger = get_logger(__name__)
@contextmanager
def ignore_padding(model):
orig_padding = model.padding
model.padding = (0, 0, 0)
try:
yield
finally:
model.padding = orig_padding
class InflatedCausalConv3d(Conv3d):
def __init__(
self,
*args,
inflation_mode: _inflation_mode_t,
memory_device: _memory_device_t = "same",
**kwargs,
):
self.inflation_mode = inflation_mode
self.memory = None
super().__init__(*args, **kwargs)
self.temporal_padding = self.padding[0]
self.memory_device = memory_device
self.padding = (0, *self.padding[1:]) # Remove temporal pad to keep causal.
self.memory_limit = float("inf")
def set_memory_limit(self, value: float):
self.memory_limit = value
def set_memory_device(self, memory_device: _memory_device_t):
self.memory_device = memory_device
def memory_limit_conv(
self,
x,
*,
split_dim=3,
padding=(0, 0, 0, 0, 0, 0),
prev_cache=None,
):
# Compatible with no limit.
if math.isinf(self.memory_limit):
if prev_cache is not None:
x = torch.cat([prev_cache, x], dim=split_dim - 1)
return super().forward(x)
# Compute tensor shape after concat & padding.
shape = torch.tensor(x.size())
if prev_cache is not None:
shape[split_dim - 1] += prev_cache.size(split_dim - 1)
shape[-3:] += torch.tensor(padding).view(3, 2).sum(-1).flip(0)
memory_occupy = shape.prod() * x.element_size() / 1024**3 # GiB
logger.debug(
f"x:{(shape, x.dtype)} {memory_occupy:.3f}GiB "
f"prev_cache:{prev_cache.shape if prev_cache is not None else None}"
)
if memory_occupy < self.memory_limit or split_dim == x.ndim:
if prev_cache is not None:
x = torch.cat([prev_cache, x], dim=split_dim - 1)
x = F.pad(x, padding, value=0.0)
with ignore_padding(self):
return super().forward(x)
logger.debug(
f"Exceed memory limit {memory_occupy} > {self.memory_limit}, split dim {split_dim}"
)
# Split input (& prev_cache).
num_splits = math.ceil(memory_occupy / self.memory_limit)
size_per_split = x.size(split_dim) // num_splits
split_sizes = [size_per_split] * (num_splits - 1)
split_sizes += [x.size(split_dim) - sum(split_sizes)]
x = list(x.split(split_sizes, dim=split_dim))
logger.debug(f"Conv inputs: {[inp.size() for inp in x]} {x[0].dtype}")
if prev_cache is not None:
prev_cache = list(prev_cache.split(split_sizes, dim=split_dim))
# Loop Fwd.
cache = None
for idx in range(len(x)):
# Concat prev cache from last dim
if prev_cache is not None:
x[idx] = torch.cat([prev_cache[idx], x[idx]], dim=split_dim - 1)
# Get padding pattern.
lpad_dim = (x[idx].ndim - split_dim - 1) * 2
rpad_dim = lpad_dim + 1
padding = list(padding)
padding[lpad_dim] = self.padding[split_dim - 2] if idx == 0 else 0
padding[rpad_dim] = self.padding[split_dim - 2] if idx == len(x) - 1 else 0
pad_len = padding[lpad_dim] + padding[rpad_dim]
padding = tuple(padding)
# Prepare cache for next slice (this dim).
next_cache = None
cache_len = cache.size(split_dim) if cache is not None else 0
next_catch_size = get_cache_size(
conv_module=self,
input_len=x[idx].size(split_dim) + cache_len,
pad_len=pad_len,
dim=split_dim - 2,
)
if next_catch_size != 0:
assert next_catch_size <= x[idx].size(split_dim)
next_cache = (
x[idx].transpose(0, split_dim)[-next_catch_size:].transpose(0, split_dim)
)
# Recursive.
x[idx] = self.memory_limit_conv(
x[idx],
split_dim=split_dim + 1,
padding=padding,
prev_cache=cache,
)
# Update cache.
cache = next_cache
logger.debug(f"Conv outputs, concat(dim={split_dim}): {[d.size() for d in x]}")
return torch.cat(x, split_dim)
def forward(
self,
input: Union[Tensor, List[Tensor]],
memory_state: MemoryState = MemoryState.UNSET,
) -> Tensor:
assert memory_state != MemoryState.UNSET
if memory_state != MemoryState.ACTIVE:
self.memory = None
if (
math.isinf(self.memory_limit)
and torch.is_tensor(input)
and get_sequence_parallel_group() is None
):
return self.basic_forward(input, memory_state)
return self.slicing_forward(input, memory_state)
def basic_forward(self, input: Tensor, memory_state: MemoryState = MemoryState.UNSET):
mem_size = self.stride[0] - self.kernel_size[0]
if (self.memory is not None) and (memory_state == MemoryState.ACTIVE):
input = extend_head(input, memory=self.memory, times=-1)
else:
input = extend_head(input, times=self.temporal_padding * 2)
memory = (
input[:, :, mem_size:].detach()
if (mem_size != 0 and memory_state != MemoryState.DISABLED)
else None
)
if (
memory_state != MemoryState.DISABLED
and not self.training
and (self.memory_device is not None)
):
self.memory = memory
if self.memory_device == "cpu" and self.memory is not None:
self.memory = self.memory.to("cpu")
return super().forward(input)
def slicing_forward(
self,
input: Union[Tensor, List[Tensor]],
memory_state: MemoryState = MemoryState.UNSET,
) -> Tensor:
squeeze_out = False
if torch.is_tensor(input):
input = [input]
squeeze_out = True
cache_size = self.kernel_size[0] - self.stride[0]
cache = cache_send_recv(
input, cache_size=cache_size, memory=self.memory, times=self.temporal_padding * 2
)
# For slice=4 and sp=2, and 17 frames in total
# sp0 sp1
# slice 0: [`0 0` 0 1 2 {3 4}] [{3 4} 5 6 (7 8)] extend=`0 0` cache={3 4} memory=(7 8)
# slice 1: [(7 8) 9 10 {11 12}] [{11 12} 13 14 15 16]
sp_rank = get_sequence_parallel_rank()
sp_size = get_sequence_parallel_world_size()
sp_group = get_sequence_parallel_group()
send_dst = get_next_sequence_parallel_rank()
recv_src = get_prev_sequence_parallel_rank()
if (
memory_state in [MemoryState.INITIALIZING, MemoryState.ACTIVE] # use_slicing
and not self.training
and (self.memory_device is not None)
and sp_rank in [0, sp_size - 1]
and cache_size != 0
):
if cache_size > input[-1].size(2) and cache is not None and len(input) == 1:
input[0] = torch.cat([cache, input[0]], dim=2)
cache = None
assert cache_size <= input[-1].size(2)
if sp_size == 1:
self.memory = input[-1][:, :, -cache_size:].detach().contiguous()
else:
if sp_rank == sp_size - 1:
dist.send(
input[-1][:, :, -cache_size:].detach().contiguous(),
send_dst,
group=sp_group,
)
if sp_rank == 0:
shape = list(input[0].size())
shape[2] = cache_size
self.memory = torch.empty(
*shape, device=input[0].device, dtype=input[0].dtype
).contiguous()
dist.recv(self.memory, recv_src, group=sp_group)
if self.memory_device == "cpu" and self.memory is not None:
self.memory = self.memory.to("cpu")
padding = tuple(x for x in reversed(self.padding) for _ in range(2))
for i in range(len(input)):
# Prepare cache for next input slice.
next_cache = None
cache_size = 0
if i < len(input) - 1:
cache_len = cache.size(2) if cache is not None else 0
cache_size = get_cache_size(self, input[i].size(2) + cache_len, pad_len=0)
if cache_size != 0:
if cache_size > input[i].size(2) and cache is not None:
input[i] = torch.cat([cache, input[i]], dim=2)
cache = None
assert cache_size <= input[i].size(2), f"{cache_size} > {input[i].size(2)}"
next_cache = input[i][:, :, -cache_size:]
# Conv forward for this input slice.
input[i] = self.memory_limit_conv(
input[i],
padding=padding,
prev_cache=cache,
)
# Update cache.
cache = next_cache
return input[0] if squeeze_out else input
def tflops(self, args, kwargs, output) -> float:
if torch.is_tensor(output):
output_numel = output.numel()
elif isinstance(output, list):
output_numel = sum(o.numel() for o in output)
else:
raise NotImplementedError
return (2 * math.prod(self.kernel_size) * self.in_channels * (output_numel / 1e6)) / 1e6
def _load_from_state_dict(
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
):
if self.inflation_mode != "none":
state_dict = modify_state_dict(
self,
state_dict,
prefix,
inflate_weight_fn=inflate_weight,
inflate_bias_fn=inflate_bias,
)
super()._load_from_state_dict(
state_dict,
prefix,
local_metadata,
(strict and self.inflation_mode == "none"),
missing_keys,
unexpected_keys,
error_msgs,
)
def init_causal_conv3d(
*args,
inflation_mode: _inflation_mode_t,
**kwargs,
):
"""
Initialize a Causal-3D convolution layer.
Parameters:
inflation_mode: Listed as below. It's compatible with all the 3D-VAE checkpoints we have.
- none: No inflation will be conducted.
The loading logic of state dict will fall back to default.
- tail / replicate: Refer to the definition of `InflatedCausalConv3d`.
"""
return InflatedCausalConv3d(*args, inflation_mode=inflation_mode, **kwargs)
def causal_norm_wrapper(norm_layer: nn.Module, x: torch.Tensor) -> torch.Tensor:
input_dtype = x.dtype
if isinstance(norm_layer, (nn.LayerNorm, RMSNorm)):
if x.ndim == 4:
x = rearrange(x, "b c h w -> b h w c")
x = norm_layer(x)
x = rearrange(x, "b h w c -> b c h w")
return x.to(input_dtype)
if x.ndim == 5:
x = rearrange(x, "b c t h w -> b t h w c")
x = norm_layer(x)
x = rearrange(x, "b t h w c -> b c t h w")
return x.to(input_dtype)
if isinstance(norm_layer, (nn.GroupNorm, nn.BatchNorm2d, nn.SyncBatchNorm)):
if x.ndim <= 4:
return norm_layer(x).to(input_dtype)
if x.ndim == 5:
t = x.size(2)
x = rearrange(x, "b c t h w -> (b t) c h w")
memory_occupy = x.numel() * x.element_size() / 1024**3
if isinstance(norm_layer, nn.GroupNorm) and memory_occupy > get_norm_limit():
num_chunks = min(4 if x.element_size() == 2 else 2, norm_layer.num_groups)
logger.debug(f"large tensor {x.shape}, norm in {num_chunks} chunks")
assert norm_layer.num_groups % num_chunks == 0
num_groups_per_chunk = norm_layer.num_groups // num_chunks
x = list(x.chunk(num_chunks, dim=1))
weights = norm_layer.weight.chunk(num_chunks, dim=0)
biases = norm_layer.bias.chunk(num_chunks, dim=0)
for i, (w, b) in enumerate(zip(weights, biases)):
x[i] = F.group_norm(x[i], num_groups_per_chunk, w, b, norm_layer.eps)
x[i] = x[i].to(input_dtype)
x = torch.cat(x, dim=1)
else:
x = norm_layer(x)
x = rearrange(x, "(b t) c h w -> b c t h w", t=t)
return x.to(input_dtype)
raise NotImplementedError
def remove_head(tensor: Tensor, times: int = 1) -> Tensor:
"""
Remove duplicated first frame features in the up-sampling process.
"""
sp_rank = get_sequence_parallel_rank()
if times == 0 or sp_rank > 0:
return tensor
return torch.cat(tensors=(tensor[:, :, :1], tensor[:, :, times + 1 :]), dim=2)
def extend_head(tensor: Tensor, times: int = 2, memory: Optional[Tensor] = None) -> Tensor:
"""
When memory is None:
- Duplicate first frame features in the down-sampling process.
When memory is not None:
- Concatenate memory features with the input features to keep temporal consistency.
"""
if memory is not None:
return torch.cat((memory.to(tensor), tensor), dim=2)
assert times >= 0, "Invalid input for function 'extend_head'!"
if times == 0:
return tensor
else:
tile_repeat = [1] * tensor.ndim
tile_repeat[2] = times
return torch.cat(tensors=(torch.tile(tensor[:, :, :1], tile_repeat), tensor), dim=2)
def inflate_weight(weight_2d: torch.Tensor, weight_3d: torch.Tensor, inflation_mode: str):
"""
Inflate a 2D convolution weight matrix to a 3D one.
Parameters:
weight_2d: The weight matrix of 2D conv to be inflated.
weight_3d: The weight matrix of 3D conv to be initialized.
inflation_mode: the mode of inflation
"""
assert inflation_mode in ["tail", "replicate"]
assert weight_3d.shape[:2] == weight_2d.shape[:2]
with torch.no_grad():
if inflation_mode == "replicate":
depth = weight_3d.size(2)
weight_3d.copy_(weight_2d.unsqueeze(2).repeat(1, 1, depth, 1, 1) / depth)
else:
weight_3d.fill_(0.0)
weight_3d[:, :, -1].copy_(weight_2d)
return weight_3d
def inflate_bias(bias_2d: torch.Tensor, bias_3d: torch.Tensor, inflation_mode: str):
"""
Inflate a 2D convolution bias tensor to a 3D one
Parameters:
bias_2d: The bias tensor of 2D conv to be inflated.
bias_3d: The bias tensor of 3D conv to be initialized.
inflation_mode: Placeholder to align `inflate_weight`.
"""
assert bias_3d.shape == bias_2d.shape
with torch.no_grad():
bias_3d.copy_(bias_2d)
return bias_3d
def modify_state_dict(layer, state_dict, prefix, inflate_weight_fn, inflate_bias_fn):
"""
the main function to inflated 2D parameters to 3D.
"""
weight_name = prefix + "weight"
bias_name = prefix + "bias"
if weight_name in state_dict:
weight_2d = state_dict[weight_name]
if weight_2d.dim() == 4:
# Assuming the 2D weights are 4D tensors (out_channels, in_channels, h, w)
weight_3d = inflate_weight_fn(
weight_2d=weight_2d,
weight_3d=layer.weight,
inflation_mode=layer.inflation_mode,
)
state_dict[weight_name] = weight_3d
else:
return state_dict
# It's a 3d state dict, should not do inflation on both bias and weight.
if bias_name in state_dict:
bias_2d = state_dict[bias_name]
if bias_2d.dim() == 1:
# Assuming the 2D biases are 1D tensors (out_channels,)
bias_3d = inflate_bias_fn(
bias_2d=bias_2d,
bias_3d=layer.bias,
inflation_mode=layer.inflation_mode,
)
state_dict[bias_name] = bias_3d
return state_dict
|