SeedVR2-3B / data /image /transforms /divisible_crop.py
IceClear
upload files
42f2c22
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# //
# // Licensed under the Apache License, Version 2.0 (the "License");
# // you may not use this file except in compliance with the License.
# // You may obtain a copy of the License at
# //
# // http://www.apache.org/licenses/LICENSE-2.0
# //
# // Unless required by applicable law or agreed to in writing, software
# // distributed under the License is distributed on an "AS IS" BASIS,
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# // See the License for the specific language governing permissions and
# // limitations under the License.
from typing import Union
import torch
from PIL import Image
from torchvision.transforms import functional as TVF
class DivisibleCrop:
def __init__(self, factor):
if not isinstance(factor, tuple):
factor = (factor, factor)
self.height_factor, self.width_factor = factor[0], factor[1]
def __call__(self, image: Union[torch.Tensor, Image.Image]):
if isinstance(image, torch.Tensor):
height, width = image.shape[-2:]
elif isinstance(image, Image.Image):
width, height = image.size
else:
raise NotImplementedError
cropped_height = height - (height % self.height_factor)
cropped_width = width - (width % self.width_factor)
image = TVF.center_crop(img=image, output_size=(cropped_height, cropped_width))
return image