# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates # // # // Licensed under the Apache License, Version 2.0 (the "License"); # // you may not use this file except in compliance with the License. # // You may obtain a copy of the License at # // # // http://www.apache.org/licenses/LICENSE-2.0 # // # // Unless required by applicable law or agreed to in writing, software # // distributed under the License is distributed on an "AS IS" BASIS, # // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # // See the License for the specific language governing permissions and # // limitations under the License. import math from contextlib import contextmanager from typing import List, Optional, Union import torch import torch.distributed as dist import torch.nn.functional as F from diffusers.models.normalization import RMSNorm from einops import rearrange from torch import Tensor, nn from torch.nn import Conv3d from common.distributed.advanced import ( get_next_sequence_parallel_rank, get_prev_sequence_parallel_rank, get_sequence_parallel_group, get_sequence_parallel_rank, get_sequence_parallel_world_size, ) from common.logger import get_logger from models.video_vae_v3.modules.context_parallel_lib import cache_send_recv, get_cache_size from models.video_vae_v3.modules.global_config import get_norm_limit from models.video_vae_v3.modules.types import MemoryState, _inflation_mode_t, _memory_device_t logger = get_logger(__name__) @contextmanager def ignore_padding(model): orig_padding = model.padding model.padding = (0, 0, 0) try: yield finally: model.padding = orig_padding class InflatedCausalConv3d(Conv3d): def __init__( self, *args, inflation_mode: _inflation_mode_t, memory_device: _memory_device_t = "same", **kwargs, ): self.inflation_mode = inflation_mode self.memory = None super().__init__(*args, **kwargs) self.temporal_padding = self.padding[0] self.memory_device = memory_device self.padding = (0, *self.padding[1:]) # Remove temporal pad to keep causal. self.memory_limit = float("inf") def set_memory_limit(self, value: float): self.memory_limit = value def set_memory_device(self, memory_device: _memory_device_t): self.memory_device = memory_device def memory_limit_conv( self, x, *, split_dim=3, padding=(0, 0, 0, 0, 0, 0), prev_cache=None, ): # Compatible with no limit. if math.isinf(self.memory_limit): if prev_cache is not None: x = torch.cat([prev_cache, x], dim=split_dim - 1) return super().forward(x) # Compute tensor shape after concat & padding. shape = torch.tensor(x.size()) if prev_cache is not None: shape[split_dim - 1] += prev_cache.size(split_dim - 1) shape[-3:] += torch.tensor(padding).view(3, 2).sum(-1).flip(0) memory_occupy = shape.prod() * x.element_size() / 1024**3 # GiB logger.debug( f"x:{(shape, x.dtype)} {memory_occupy:.3f}GiB " f"prev_cache:{prev_cache.shape if prev_cache is not None else None}" ) if memory_occupy < self.memory_limit or split_dim == x.ndim: if prev_cache is not None: x = torch.cat([prev_cache, x], dim=split_dim - 1) x = F.pad(x, padding, value=0.0) with ignore_padding(self): return super().forward(x) logger.debug( f"Exceed memory limit {memory_occupy} > {self.memory_limit}, split dim {split_dim}" ) # Split input (& prev_cache). num_splits = math.ceil(memory_occupy / self.memory_limit) size_per_split = x.size(split_dim) // num_splits split_sizes = [size_per_split] * (num_splits - 1) split_sizes += [x.size(split_dim) - sum(split_sizes)] x = list(x.split(split_sizes, dim=split_dim)) logger.debug(f"Conv inputs: {[inp.size() for inp in x]} {x[0].dtype}") if prev_cache is not None: prev_cache = list(prev_cache.split(split_sizes, dim=split_dim)) # Loop Fwd. cache = None for idx in range(len(x)): # Concat prev cache from last dim if prev_cache is not None: x[idx] = torch.cat([prev_cache[idx], x[idx]], dim=split_dim - 1) # Get padding pattern. lpad_dim = (x[idx].ndim - split_dim - 1) * 2 rpad_dim = lpad_dim + 1 padding = list(padding) padding[lpad_dim] = self.padding[split_dim - 2] if idx == 0 else 0 padding[rpad_dim] = self.padding[split_dim - 2] if idx == len(x) - 1 else 0 pad_len = padding[lpad_dim] + padding[rpad_dim] padding = tuple(padding) # Prepare cache for next slice (this dim). next_cache = None cache_len = cache.size(split_dim) if cache is not None else 0 next_catch_size = get_cache_size( conv_module=self, input_len=x[idx].size(split_dim) + cache_len, pad_len=pad_len, dim=split_dim - 2, ) if next_catch_size != 0: assert next_catch_size <= x[idx].size(split_dim) next_cache = ( x[idx].transpose(0, split_dim)[-next_catch_size:].transpose(0, split_dim) ) # Recursive. x[idx] = self.memory_limit_conv( x[idx], split_dim=split_dim + 1, padding=padding, prev_cache=cache, ) # Update cache. cache = next_cache logger.debug(f"Conv outputs, concat(dim={split_dim}): {[d.size() for d in x]}") return torch.cat(x, split_dim) def forward( self, input: Union[Tensor, List[Tensor]], memory_state: MemoryState = MemoryState.UNSET, ) -> Tensor: assert memory_state != MemoryState.UNSET if memory_state != MemoryState.ACTIVE: self.memory = None if ( math.isinf(self.memory_limit) and torch.is_tensor(input) and get_sequence_parallel_group() is None ): return self.basic_forward(input, memory_state) return self.slicing_forward(input, memory_state) def basic_forward(self, input: Tensor, memory_state: MemoryState = MemoryState.UNSET): mem_size = self.stride[0] - self.kernel_size[0] if (self.memory is not None) and (memory_state == MemoryState.ACTIVE): input = extend_head(input, memory=self.memory, times=-1) else: input = extend_head(input, times=self.temporal_padding * 2) memory = ( input[:, :, mem_size:].detach() if (mem_size != 0 and memory_state != MemoryState.DISABLED) else None ) if ( memory_state != MemoryState.DISABLED and not self.training and (self.memory_device is not None) ): self.memory = memory if self.memory_device == "cpu" and self.memory is not None: self.memory = self.memory.to("cpu") return super().forward(input) def slicing_forward( self, input: Union[Tensor, List[Tensor]], memory_state: MemoryState = MemoryState.UNSET, ) -> Tensor: squeeze_out = False if torch.is_tensor(input): input = [input] squeeze_out = True cache_size = self.kernel_size[0] - self.stride[0] cache = cache_send_recv( input, cache_size=cache_size, memory=self.memory, times=self.temporal_padding * 2 ) # For slice=4 and sp=2, and 17 frames in total # sp0 sp1 # slice 0: [`0 0` 0 1 2 {3 4}] [{3 4} 5 6 (7 8)] extend=`0 0` cache={3 4} memory=(7 8) # slice 1: [(7 8) 9 10 {11 12}] [{11 12} 13 14 15 16] sp_rank = get_sequence_parallel_rank() sp_size = get_sequence_parallel_world_size() sp_group = get_sequence_parallel_group() send_dst = get_next_sequence_parallel_rank() recv_src = get_prev_sequence_parallel_rank() if ( memory_state in [MemoryState.INITIALIZING, MemoryState.ACTIVE] # use_slicing and not self.training and (self.memory_device is not None) and sp_rank in [0, sp_size - 1] and cache_size != 0 ): if cache_size > input[-1].size(2) and cache is not None and len(input) == 1: input[0] = torch.cat([cache, input[0]], dim=2) cache = None assert cache_size <= input[-1].size(2) if sp_size == 1: self.memory = input[-1][:, :, -cache_size:].detach().contiguous() else: if sp_rank == sp_size - 1: dist.send( input[-1][:, :, -cache_size:].detach().contiguous(), send_dst, group=sp_group, ) if sp_rank == 0: shape = list(input[0].size()) shape[2] = cache_size self.memory = torch.empty( *shape, device=input[0].device, dtype=input[0].dtype ).contiguous() dist.recv(self.memory, recv_src, group=sp_group) if self.memory_device == "cpu" and self.memory is not None: self.memory = self.memory.to("cpu") padding = tuple(x for x in reversed(self.padding) for _ in range(2)) for i in range(len(input)): # Prepare cache for next input slice. next_cache = None cache_size = 0 if i < len(input) - 1: cache_len = cache.size(2) if cache is not None else 0 cache_size = get_cache_size(self, input[i].size(2) + cache_len, pad_len=0) if cache_size != 0: if cache_size > input[i].size(2) and cache is not None: input[i] = torch.cat([cache, input[i]], dim=2) cache = None assert cache_size <= input[i].size(2), f"{cache_size} > {input[i].size(2)}" next_cache = input[i][:, :, -cache_size:] # Conv forward for this input slice. input[i] = self.memory_limit_conv( input[i], padding=padding, prev_cache=cache, ) # Update cache. cache = next_cache return input[0] if squeeze_out else input def tflops(self, args, kwargs, output) -> float: if torch.is_tensor(output): output_numel = output.numel() elif isinstance(output, list): output_numel = sum(o.numel() for o in output) else: raise NotImplementedError return (2 * math.prod(self.kernel_size) * self.in_channels * (output_numel / 1e6)) / 1e6 def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ): if self.inflation_mode != "none": state_dict = modify_state_dict( self, state_dict, prefix, inflate_weight_fn=inflate_weight, inflate_bias_fn=inflate_bias, ) super()._load_from_state_dict( state_dict, prefix, local_metadata, (strict and self.inflation_mode == "none"), missing_keys, unexpected_keys, error_msgs, ) def init_causal_conv3d( *args, inflation_mode: _inflation_mode_t, **kwargs, ): """ Initialize a Causal-3D convolution layer. Parameters: inflation_mode: Listed as below. It's compatible with all the 3D-VAE checkpoints we have. - none: No inflation will be conducted. The loading logic of state dict will fall back to default. - tail / replicate: Refer to the definition of `InflatedCausalConv3d`. """ return InflatedCausalConv3d(*args, inflation_mode=inflation_mode, **kwargs) def causal_norm_wrapper(norm_layer: nn.Module, x: torch.Tensor) -> torch.Tensor: input_dtype = x.dtype if isinstance(norm_layer, (nn.LayerNorm, RMSNorm)): if x.ndim == 4: x = rearrange(x, "b c h w -> b h w c") x = norm_layer(x) x = rearrange(x, "b h w c -> b c h w") return x.to(input_dtype) if x.ndim == 5: x = rearrange(x, "b c t h w -> b t h w c") x = norm_layer(x) x = rearrange(x, "b t h w c -> b c t h w") return x.to(input_dtype) if isinstance(norm_layer, (nn.GroupNorm, nn.BatchNorm2d, nn.SyncBatchNorm)): if x.ndim <= 4: return norm_layer(x).to(input_dtype) if x.ndim == 5: t = x.size(2) x = rearrange(x, "b c t h w -> (b t) c h w") memory_occupy = x.numel() * x.element_size() / 1024**3 if isinstance(norm_layer, nn.GroupNorm) and memory_occupy > get_norm_limit(): num_chunks = min(4 if x.element_size() == 2 else 2, norm_layer.num_groups) logger.debug(f"large tensor {x.shape}, norm in {num_chunks} chunks") assert norm_layer.num_groups % num_chunks == 0 num_groups_per_chunk = norm_layer.num_groups // num_chunks x = list(x.chunk(num_chunks, dim=1)) weights = norm_layer.weight.chunk(num_chunks, dim=0) biases = norm_layer.bias.chunk(num_chunks, dim=0) for i, (w, b) in enumerate(zip(weights, biases)): x[i] = F.group_norm(x[i], num_groups_per_chunk, w, b, norm_layer.eps) x[i] = x[i].to(input_dtype) x = torch.cat(x, dim=1) else: x = norm_layer(x) x = rearrange(x, "(b t) c h w -> b c t h w", t=t) return x.to(input_dtype) raise NotImplementedError def remove_head(tensor: Tensor, times: int = 1) -> Tensor: """ Remove duplicated first frame features in the up-sampling process. """ sp_rank = get_sequence_parallel_rank() if times == 0 or sp_rank > 0: return tensor return torch.cat(tensors=(tensor[:, :, :1], tensor[:, :, times + 1 :]), dim=2) def extend_head(tensor: Tensor, times: int = 2, memory: Optional[Tensor] = None) -> Tensor: """ When memory is None: - Duplicate first frame features in the down-sampling process. When memory is not None: - Concatenate memory features with the input features to keep temporal consistency. """ if memory is not None: return torch.cat((memory.to(tensor), tensor), dim=2) assert times >= 0, "Invalid input for function 'extend_head'!" if times == 0: return tensor else: tile_repeat = [1] * tensor.ndim tile_repeat[2] = times return torch.cat(tensors=(torch.tile(tensor[:, :, :1], tile_repeat), tensor), dim=2) def inflate_weight(weight_2d: torch.Tensor, weight_3d: torch.Tensor, inflation_mode: str): """ Inflate a 2D convolution weight matrix to a 3D one. Parameters: weight_2d: The weight matrix of 2D conv to be inflated. weight_3d: The weight matrix of 3D conv to be initialized. inflation_mode: the mode of inflation """ assert inflation_mode in ["tail", "replicate"] assert weight_3d.shape[:2] == weight_2d.shape[:2] with torch.no_grad(): if inflation_mode == "replicate": depth = weight_3d.size(2) weight_3d.copy_(weight_2d.unsqueeze(2).repeat(1, 1, depth, 1, 1) / depth) else: weight_3d.fill_(0.0) weight_3d[:, :, -1].copy_(weight_2d) return weight_3d def inflate_bias(bias_2d: torch.Tensor, bias_3d: torch.Tensor, inflation_mode: str): """ Inflate a 2D convolution bias tensor to a 3D one Parameters: bias_2d: The bias tensor of 2D conv to be inflated. bias_3d: The bias tensor of 3D conv to be initialized. inflation_mode: Placeholder to align `inflate_weight`. """ assert bias_3d.shape == bias_2d.shape with torch.no_grad(): bias_3d.copy_(bias_2d) return bias_3d def modify_state_dict(layer, state_dict, prefix, inflate_weight_fn, inflate_bias_fn): """ the main function to inflated 2D parameters to 3D. """ weight_name = prefix + "weight" bias_name = prefix + "bias" if weight_name in state_dict: weight_2d = state_dict[weight_name] if weight_2d.dim() == 4: # Assuming the 2D weights are 4D tensors (out_channels, in_channels, h, w) weight_3d = inflate_weight_fn( weight_2d=weight_2d, weight_3d=layer.weight, inflation_mode=layer.inflation_mode, ) state_dict[weight_name] = weight_3d else: return state_dict # It's a 3d state dict, should not do inflation on both bias and weight. if bias_name in state_dict: bias_2d = state_dict[bias_name] if bias_2d.dim() == 1: # Assuming the 2D biases are 1D tensors (out_channels,) bias_3d = inflate_bias_fn( bias_2d=bias_2d, bias_3d=layer.bias, inflation_mode=layer.inflation_mode, ) state_dict[bias_name] = bias_3d return state_dict