|
|
|
|
|
from pydantic import BaseModel, ConfigDict |
|
import numpy as np |
|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
from scipy.integrate import odeint |
|
from scipy.optimize import curve_fit |
|
from sklearn.metrics import mean_squared_error |
|
import gradio as gr |
|
import io |
|
from PIL import Image |
|
import tempfile |
|
|
|
class YourModel(BaseModel): |
|
class Config: |
|
arbitrary_types_allowed = True |
|
|
|
class BioprocessModel: |
|
def __init__(self, model_type='logistic', maxfev=50000): |
|
self.params = {} |
|
self.r2 = {} |
|
self.rmse = {} |
|
self.datax = [] |
|
self.datas = [] |
|
self.datap = [] |
|
self.dataxp = [] |
|
self.datasp = [] |
|
self.datapp = [] |
|
self.datax_std = [] |
|
self.datas_std = [] |
|
self.datap_std = [] |
|
self.biomass_model = None |
|
self.biomass_diff = None |
|
self.model_type = model_type |
|
self.maxfev = maxfev |
|
self.time = None |
|
|
|
@staticmethod |
|
def logistic(time, xo, xm, um): |
|
|
|
if xm == 0 or (xo / xm == 1 and np.any(um * time > 0)): |
|
return np.full_like(time, np.nan) |
|
|
|
denominator = (1 - (xo / xm) * (1 - np.exp(um * time))) |
|
denominator = np.where(denominator == 0, 1e-9, denominator) |
|
return (xo * np.exp(um * time)) / denominator |
|
|
|
|
|
@staticmethod |
|
def gompertz(time, xm, um, lag): |
|
|
|
if xm == 0: |
|
return np.full_like(time, np.nan) |
|
return xm * np.exp(-np.exp((um * np.e / xm) * (lag - time) + 1)) |
|
|
|
@staticmethod |
|
def moser(time, Xm, um, Ks): |
|
return Xm * (1 - np.exp(-um * (time - Ks))) |
|
|
|
@staticmethod |
|
def logistic_diff(X, t, params): |
|
xo, xm, um = params |
|
if xm == 0: |
|
return 0 |
|
return um * X * (1 - X / xm) |
|
|
|
@staticmethod |
|
def gompertz_diff(X, t, params): |
|
xm, um, lag = params |
|
if xm == 0: |
|
return 0 |
|
return X * (um * np.e / xm) * np.exp((um * np.e / xm) * (lag - t) + 1) |
|
|
|
@staticmethod |
|
def moser_diff(X, t, params): |
|
Xm, um, Ks = params |
|
return um * (Xm - X) |
|
|
|
def substrate(self, time, so, p, q, biomass_params): |
|
if self.biomass_model is None or not biomass_params: |
|
return np.full_like(time, np.nan) |
|
X_t = self.biomass_model(time, *biomass_params) |
|
if np.any(np.isnan(X_t)): |
|
return np.full_like(time, np.nan) |
|
|
|
|
|
|
|
integral_X = np.zeros_like(X_t) |
|
if len(time) > 1: |
|
dt = np.diff(time, prepend=time[0] - (time[1]-time[0] if len(time)>1 else 1)) |
|
integral_X = np.cumsum(X_t * dt) |
|
|
|
|
|
|
|
|
|
if self.model_type == 'logistic': |
|
X0 = biomass_params[0] |
|
elif self.model_type == 'gompertz': |
|
|
|
X0 = self.gompertz(0, *biomass_params) |
|
elif self.model_type == 'moser': |
|
|
|
X0 = self.moser(0, *biomass_params) |
|
else: |
|
X0 = X_t[0] |
|
|
|
return so - p * (X_t - X0) - q * integral_X |
|
|
|
|
|
def product(self, time, po, alpha, beta, biomass_params): |
|
if self.biomass_model is None or not biomass_params: |
|
return np.full_like(time, np.nan) |
|
X_t = self.biomass_model(time, *biomass_params) |
|
if np.any(np.isnan(X_t)): |
|
return np.full_like(time, np.nan) |
|
|
|
|
|
integral_X = np.zeros_like(X_t) |
|
if len(time) > 1: |
|
dt = np.diff(time, prepend=time[0] - (time[1]-time[0] if len(time)>1 else 1)) |
|
integral_X = np.cumsum(X_t * dt) |
|
|
|
if self.model_type == 'logistic': |
|
X0 = biomass_params[0] |
|
elif self.model_type == 'gompertz': |
|
X0 = self.gompertz(0, *biomass_params) |
|
elif self.model_type == 'moser': |
|
X0 = self.moser(0, *biomass_params) |
|
else: |
|
X0 = X_t[0] |
|
|
|
return po + alpha * (X_t - X0) + beta * integral_X |
|
|
|
def process_data(self, df): |
|
biomass_cols = [col for col in df.columns if col[1] == 'Biomasa'] |
|
substrate_cols = [col for col in df.columns if col[1] == 'Sustrato'] |
|
product_cols = [col for col in df.columns if col[1] == 'Producto'] |
|
|
|
if not any(col[1] == 'Tiempo' for col in df.columns): |
|
raise ValueError("La columna 'Tiempo' no se encuentra en el DataFrame.") |
|
time_col = [col for col in df.columns if col[1] == 'Tiempo'][0] |
|
time = df[time_col].values |
|
|
|
if len(biomass_cols) > 0: |
|
data_biomass = [df[col].values for col in biomass_cols] |
|
data_biomass = np.array(data_biomass) |
|
self.datax.append(data_biomass) |
|
self.dataxp.append(np.mean(data_biomass, axis=0)) |
|
self.datax_std.append(np.std(data_biomass, axis=0, ddof=1)) |
|
else: |
|
self.datax.append(np.array([])) |
|
self.dataxp.append(np.array([])) |
|
self.datax_std.append(np.array([])) |
|
|
|
|
|
if len(substrate_cols) > 0: |
|
data_substrate = [df[col].values for col in substrate_cols] |
|
data_substrate = np.array(data_substrate) |
|
self.datas.append(data_substrate) |
|
self.datasp.append(np.mean(data_substrate, axis=0)) |
|
self.datas_std.append(np.std(data_substrate, axis=0, ddof=1)) |
|
else: |
|
self.datas.append(np.array([])) |
|
self.datasp.append(np.array([])) |
|
self.datas_std.append(np.array([])) |
|
|
|
if len(product_cols) > 0: |
|
data_product = [df[col].values for col in product_cols] |
|
data_product = np.array(data_product) |
|
self.datap.append(data_product) |
|
self.datapp.append(np.mean(data_product, axis=0)) |
|
self.datap_std.append(np.std(data_product, axis=0, ddof=1)) |
|
else: |
|
self.datap.append(np.array([])) |
|
self.datapp.append(np.array([])) |
|
self.datap_std.append(np.array([])) |
|
|
|
|
|
self.time = time |
|
|
|
def fit_model(self): |
|
if self.model_type == 'logistic': |
|
self.biomass_model = self.logistic |
|
self.biomass_diff = self.logistic_diff |
|
elif self.model_type == 'gompertz': |
|
self.biomass_model = self.gompertz |
|
self.biomass_diff = self.gompertz_diff |
|
elif self.model_type == 'moser': |
|
self.biomass_model = self.moser |
|
self.biomass_diff = self.moser_diff |
|
|
|
def fit_biomass(self, time, biomass): |
|
try: |
|
|
|
if len(np.unique(biomass)) < 2 : |
|
print(f"Biomasa constante para {self.model_type}, no se puede ajustar el modelo.") |
|
return None |
|
|
|
if self.model_type == 'logistic': |
|
|
|
|
|
xo_guess = biomass[biomass > 1e-6][0] if np.any(biomass > 1e-6) else 1e-3 |
|
xm_guess = max(biomass) * 1.1 if max(biomass) > xo_guess else xo_guess * 2 |
|
if xm_guess <= xo_guess: xm_guess = xo_guess + 1e-3 |
|
p0 = [xo_guess, xm_guess, 0.1] |
|
bounds = ([1e-9, 1e-9, 1e-9], [np.inf, np.inf, np.inf]) |
|
popt, _ = curve_fit(self.logistic, time, biomass, p0=p0, maxfev=self.maxfev, bounds=bounds, ftol=1e-9, xtol=1e-9) |
|
|
|
if popt[1] <= popt[0]: |
|
print(f"Advertencia: En modelo logístico, Xm ({popt[1]:.2f}) no es mayor que Xo ({popt[0]:.2f}). Ajuste puede no ser válido.") |
|
|
|
self.params['biomass'] = {'xo': popt[0], 'xm': popt[1], 'um': popt[2]} |
|
y_pred = self.logistic(time, *popt) |
|
|
|
elif self.model_type == 'gompertz': |
|
xm_guess = max(biomass) if max(biomass) > 0 else 1.0 |
|
um_guess = 0.1 |
|
|
|
|
|
lag_guess = time[np.argmax(np.gradient(biomass))] if len(biomass) > 1 and np.any(np.gradient(biomass) > 1e-6) else time[0] |
|
p0 = [xm_guess, um_guess, lag_guess] |
|
bounds = ([1e-9, 1e-9, 0], [np.inf, np.inf, max(time) if len(time)>0 else 100]) |
|
popt, _ = curve_fit(self.gompertz, time, biomass, p0=p0, maxfev=self.maxfev, bounds=bounds, ftol=1e-9, xtol=1e-9) |
|
self.params['biomass'] = {'xm': popt[0], 'um': popt[1], 'lag': popt[2]} |
|
y_pred = self.gompertz(time, *popt) |
|
|
|
elif self.model_type == 'moser': |
|
Xm_guess = max(biomass) if max(biomass) > 0 else 1.0 |
|
um_guess = 0.1 |
|
Ks_guess = time[0] |
|
p0 = [Xm_guess, um_guess, Ks_guess] |
|
|
|
bounds = ([1e-9, 1e-9, -np.inf], [np.inf, np.inf, max(time) if len(time)>0 else 100]) |
|
popt, _ = curve_fit(self.moser, time, biomass, p0=p0, maxfev=self.maxfev, bounds=bounds, ftol=1e-9, xtol=1e-9) |
|
self.params['biomass'] = {'Xm': popt[0], 'um': popt[1], 'Ks': popt[2]} |
|
y_pred = self.moser(time, *popt) |
|
else: |
|
return None |
|
|
|
if np.any(np.isnan(y_pred)) or np.any(np.isinf(y_pred)): |
|
print(f"Predicción de biomasa contiene NaN/Inf para {self.model_type}. Ajuste fallido.") |
|
self.r2['biomass'] = np.nan |
|
self.rmse['biomass'] = np.nan |
|
return None |
|
|
|
|
|
ss_res = np.sum((biomass - y_pred) ** 2) |
|
ss_tot = np.sum((biomass - np.mean(biomass)) ** 2) |
|
if ss_tot == 0: |
|
self.r2['biomass'] = 1.0 if ss_res == 0 else 0.0 |
|
else: |
|
self.r2['biomass'] = 1 - (ss_res / ss_tot) |
|
self.rmse['biomass'] = np.sqrt(mean_squared_error(biomass, y_pred)) |
|
return y_pred |
|
except RuntimeError as e: |
|
print(f"Error de Runtime en fit_biomass_{self.model_type} (probablemente no se pudo ajustar): {e}") |
|
self.params['biomass'] = {} |
|
self.r2['biomass'] = np.nan |
|
self.rmse['biomass'] = np.nan |
|
return None |
|
except Exception as e: |
|
print(f"Error general en fit_biomass_{self.model_type}: {e}") |
|
self.params['biomass'] = {} |
|
self.r2['biomass'] = np.nan |
|
self.rmse['biomass'] = np.nan |
|
return None |
|
|
|
def fit_substrate(self, time, substrate, biomass_params_dict): |
|
if not biomass_params_dict: |
|
print(f"Error en fit_substrate_{self.model_type}: Parámetros de biomasa no disponibles.") |
|
return None |
|
try: |
|
|
|
if self.model_type == 'logistic': |
|
biomass_params_values = [biomass_params_dict['xo'], biomass_params_dict['xm'], biomass_params_dict['um']] |
|
elif self.model_type == 'gompertz': |
|
biomass_params_values = [biomass_params_dict['xm'], biomass_params_dict['um'], biomass_params_dict['lag']] |
|
elif self.model_type == 'moser': |
|
biomass_params_values = [biomass_params_dict['Xm'], biomass_params_dict['um'], biomass_params_dict['Ks']] |
|
else: |
|
return None |
|
|
|
so_guess = substrate[0] if len(substrate) > 0 else 1.0 |
|
p_guess = 0.1 |
|
q_guess = 0.01 |
|
p0 = [so_guess, p_guess, q_guess] |
|
bounds = ([0, 0, 0], [np.inf, np.inf, np.inf]) |
|
|
|
|
|
popt, _ = curve_fit( |
|
lambda t, so, p, q: self.substrate(t, so, p, q, biomass_params_values), |
|
time, substrate, p0=p0, maxfev=self.maxfev, bounds=bounds, ftol=1e-9, xtol=1e-9 |
|
) |
|
self.params['substrate'] = {'so': popt[0], 'p': popt[1], 'q': popt[2]} |
|
y_pred = self.substrate(time, *popt, biomass_params_values) |
|
|
|
if np.any(np.isnan(y_pred)) or np.any(np.isinf(y_pred)): |
|
print(f"Predicción de sustrato contiene NaN/Inf para {self.model_type}. Ajuste fallido.") |
|
self.r2['substrate'] = np.nan |
|
self.rmse['substrate'] = np.nan |
|
return None |
|
|
|
ss_res = np.sum((substrate - y_pred) ** 2) |
|
ss_tot = np.sum((substrate - np.mean(substrate)) ** 2) |
|
if ss_tot == 0: |
|
self.r2['substrate'] = 1.0 if ss_res == 0 else 0.0 |
|
else: |
|
self.r2['substrate'] = 1 - (ss_res / ss_tot) |
|
self.rmse['substrate'] = np.sqrt(mean_squared_error(substrate, y_pred)) |
|
return y_pred |
|
except RuntimeError as e: |
|
print(f"Error de Runtime en fit_substrate_{self.model_type} (probablemente no se pudo ajustar): {e}") |
|
self.params['substrate'] = {} |
|
self.r2['substrate'] = np.nan |
|
self.rmse['substrate'] = np.nan |
|
return None |
|
except Exception as e: |
|
print(f"Error general en fit_substrate_{self.model_type}: {e}") |
|
self.params['substrate'] = {} |
|
self.r2['substrate'] = np.nan |
|
self.rmse['substrate'] = np.nan |
|
return None |
|
|
|
def fit_product(self, time, product, biomass_params_dict): |
|
if not biomass_params_dict: |
|
print(f"Error en fit_product_{self.model_type}: Parámetros de biomasa no disponibles.") |
|
return None |
|
try: |
|
if self.model_type == 'logistic': |
|
biomass_params_values = [biomass_params_dict['xo'], biomass_params_dict['xm'], biomass_params_dict['um']] |
|
elif self.model_type == 'gompertz': |
|
biomass_params_values = [biomass_params_dict['xm'], biomass_params_dict['um'], biomass_params_dict['lag']] |
|
elif self.model_type == 'moser': |
|
biomass_params_values = [biomass_params_dict['Xm'], biomass_params_dict['um'], biomass_params_dict['Ks']] |
|
else: |
|
return None |
|
|
|
po_guess = product[0] if len(product) > 0 else 0.0 |
|
alpha_guess = 0.1 |
|
beta_guess = 0.01 |
|
p0 = [po_guess, alpha_guess, beta_guess] |
|
bounds = ([0, 0, 0], [np.inf, np.inf, np.inf]) |
|
|
|
popt, _ = curve_fit( |
|
lambda t, po, alpha, beta: self.product(t, po, alpha, beta, biomass_params_values), |
|
time, product, p0=p0, maxfev=self.maxfev, bounds=bounds, ftol=1e-9, xtol=1e-9 |
|
) |
|
self.params['product'] = {'po': popt[0], 'alpha': popt[1], 'beta': popt[2]} |
|
y_pred = self.product(time, *popt, biomass_params_values) |
|
|
|
if np.any(np.isnan(y_pred)) or np.any(np.isinf(y_pred)): |
|
print(f"Predicción de producto contiene NaN/Inf para {self.model_type}. Ajuste fallido.") |
|
self.r2['product'] = np.nan |
|
self.rmse['product'] = np.nan |
|
return None |
|
|
|
ss_res = np.sum((product - y_pred) ** 2) |
|
ss_tot = np.sum((product - np.mean(product)) ** 2) |
|
if ss_tot == 0: |
|
self.r2['product'] = 1.0 if ss_res == 0 else 0.0 |
|
else: |
|
self.r2['product'] = 1 - (ss_res / ss_tot) |
|
self.rmse['product'] = np.sqrt(mean_squared_error(product, y_pred)) |
|
return y_pred |
|
except RuntimeError as e: |
|
print(f"Error de Runtime en fit_product_{self.model_type} (probablemente no se pudo ajustar): {e}") |
|
self.params['product'] = {} |
|
self.r2['product'] = np.nan |
|
self.rmse['product'] = np.nan |
|
return None |
|
except Exception as e: |
|
print(f"Error general en fit_product_{self.model_type}: {e}") |
|
self.params['product'] = {} |
|
self.r2['product'] = np.nan |
|
self.rmse['product'] = np.nan |
|
return None |
|
|
|
def generate_fine_time_grid(self, time): |
|
if time is None or len(time) == 0: |
|
return np.array([0]) |
|
time_fine = np.linspace(time.min(), time.max(), 500) |
|
return time_fine |
|
|
|
def system(self, y, t, biomass_params_list, substrate_params_list, product_params_list, model_type): |
|
X, S, P = y |
|
|
|
|
|
if model_type == 'logistic': |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dXdt = self.logistic_diff(X, t, biomass_params_list) |
|
elif model_type == 'gompertz': |
|
|
|
dXdt = self.gompertz_diff(X, t, biomass_params_list) |
|
elif model_type == 'moser': |
|
|
|
dXdt = self.moser_diff(X, t, biomass_params_list) |
|
else: |
|
dXdt = 0.0 |
|
|
|
|
|
|
|
|
|
|
|
p_val = substrate_params_list[1] if len(substrate_params_list) > 1 else 0 |
|
q_val = substrate_params_list[2] if len(substrate_params_list) > 2 else 0 |
|
dSdt = -p_val * dXdt - q_val * X |
|
|
|
|
|
|
|
|
|
|
|
alpha_val = product_params_list[1] if len(product_params_list) > 1 else 0 |
|
beta_val = product_params_list[2] if len(product_params_list) > 2 else 0 |
|
dPdt = alpha_val * dXdt + beta_val * X |
|
|
|
return [dXdt, dSdt, dPdt] |
|
|
|
|
|
def get_initial_conditions(self, time, biomass, substrate, product): |
|
|
|
X0_exp = biomass[0] if len(biomass) > 0 else 0 |
|
S0_exp = substrate[0] if len(substrate) > 0 else 0 |
|
P0_exp = product[0] if len(product) > 0 else 0 |
|
|
|
|
|
if 'biomass' in self.params and self.params['biomass']: |
|
if self.model_type == 'logistic': |
|
|
|
X0 = self.params['biomass'].get('xo', X0_exp) |
|
elif self.model_type == 'gompertz': |
|
|
|
xm = self.params['biomass'].get('xm', 1) |
|
um = self.params['biomass'].get('um', 0.1) |
|
lag = self.params['biomass'].get('lag', 0) |
|
X0 = self.gompertz(0, xm, um, lag) |
|
if np.isnan(X0): X0 = X0_exp |
|
elif self.model_type == 'moser': |
|
|
|
Xm_param = self.params['biomass'].get('Xm', 1) |
|
um_param = self.params['biomass'].get('um', 0.1) |
|
Ks_param = self.params['biomass'].get('Ks', 0) |
|
X0 = self.moser(0, Xm_param, um_param, Ks_param) |
|
if np.isnan(X0): X0 = X0_exp |
|
else: |
|
X0 = X0_exp |
|
else: |
|
X0 = X0_exp |
|
|
|
|
|
if 'substrate' in self.params and self.params['substrate']: |
|
|
|
S0 = self.params['substrate'].get('so', S0_exp) |
|
else: |
|
S0 = S0_exp |
|
|
|
|
|
if 'product' in self.params and self.params['product']: |
|
|
|
P0 = self.params['product'].get('po', P0_exp) |
|
else: |
|
P0 = P0_exp |
|
|
|
|
|
X0 = X0 if not np.isnan(X0) else 0.0 |
|
S0 = S0 if not np.isnan(S0) else 0.0 |
|
P0 = P0 if not np.isnan(P0) else 0.0 |
|
|
|
return [X0, S0, P0] |
|
|
|
def solve_differential_equations(self, time, biomass, substrate, product): |
|
if 'biomass' not in self.params or not self.params['biomass']: |
|
print("No hay parámetros de biomasa, no se pueden resolver las EDO.") |
|
return None, None, None, time |
|
if time is None or len(time) == 0 : |
|
print("Tiempo no válido para resolver EDOs.") |
|
return None, None, None, np.array([]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.model_type == 'logistic': |
|
|
|
biomass_params_list = [self.params['biomass']['xo'], self.params['biomass']['xm'], self.params['biomass']['um']] |
|
elif self.model_type == 'gompertz': |
|
|
|
biomass_params_list = [self.params['biomass']['xm'], self.params['biomass']['um'], self.params['biomass']['lag']] |
|
elif self.model_type == 'moser': |
|
|
|
biomass_params_list = [self.params['biomass']['Xm'], self.params['biomass']['um'], self.params['biomass']['Ks']] |
|
else: |
|
print(f"Tipo de modelo de biomasa desconocido: {self.model_type}") |
|
return None, None, None, time |
|
|
|
|
|
|
|
|
|
substrate_params_list = [ |
|
self.params.get('substrate', {}).get('so', 0), |
|
self.params.get('substrate', {}).get('p', 0), |
|
self.params.get('substrate', {}).get('q', 0) |
|
] |
|
|
|
|
|
|
|
|
|
product_params_list = [ |
|
self.params.get('product', {}).get('po', 0), |
|
self.params.get('product', {}).get('alpha', 0), |
|
self.params.get('product', {}).get('beta', 0) |
|
] |
|
|
|
initial_conditions = self.get_initial_conditions(time, biomass, substrate, product) |
|
time_fine = self.generate_fine_time_grid(time) |
|
if len(time_fine) == 0: |
|
print("No se pudo generar la malla de tiempo fina.") |
|
return None, None, None, time |
|
|
|
try: |
|
sol = odeint(self.system, initial_conditions, time_fine, |
|
args=(biomass_params_list, substrate_params_list, product_params_list, self.model_type), |
|
rtol=1e-6, atol=1e-6) |
|
except Exception as e: |
|
print(f"Error al resolver EDOs con odeint: {e}") |
|
|
|
try: |
|
print("Intentando con método 'lsoda'...") |
|
sol = odeint(self.system, initial_conditions, time_fine, |
|
args=(biomass_params_list, substrate_params_list, product_params_list, self.model_type), |
|
rtol=1e-6, atol=1e-6, method='lsoda') |
|
except Exception as e_lsoda: |
|
print(f"Error al resolver EDOs con odeint (método lsoda): {e_lsoda}") |
|
return None, None, None, time_fine |
|
|
|
|
|
X = sol[:, 0] |
|
S = sol[:, 1] |
|
P = sol[:, 2] |
|
|
|
return X, S, P, time_fine |
|
|
|
def plot_results(self, time, biomass, substrate, product, |
|
y_pred_biomass, y_pred_substrate, y_pred_product, |
|
biomass_std=None, substrate_std=None, product_std=None, |
|
experiment_name='', legend_position='best', params_position='upper right', |
|
show_legend=True, show_params=True, |
|
style='whitegrid', |
|
line_color='#0000FF', point_color='#000000', line_style='-', marker_style='o', |
|
use_differential=False, axis_labels=None): |
|
|
|
if y_pred_biomass is None and not use_differential: |
|
print(f"No se pudo ajustar biomasa para {experiment_name} con {self.model_type} y no se usan EDO. Omitiendo figura.") |
|
return None |
|
if use_differential and ('biomass' not in self.params or not self.params['biomass']): |
|
print(f"Se solicitó usar EDO pero no hay parámetros de biomasa para {experiment_name}. Omitiendo EDO.") |
|
use_differential = False |
|
|
|
|
|
|
|
if axis_labels is None: |
|
axis_labels = { |
|
'x_label': 'Tiempo', |
|
'biomass_label': 'Biomasa', |
|
'substrate_label': 'Sustrato', |
|
'product_label': 'Producto' |
|
} |
|
|
|
sns.set_style(style) |
|
time_to_plot = time |
|
|
|
if use_differential and 'biomass' in self.params and self.params['biomass']: |
|
X_ode, S_ode, P_ode, time_fine_ode = self.solve_differential_equations(time, biomass, substrate, product) |
|
if X_ode is not None: |
|
y_pred_biomass, y_pred_substrate, y_pred_product = X_ode, S_ode, P_ode |
|
time_to_plot = time_fine_ode |
|
else: |
|
print(f"Fallo al resolver EDOs para {experiment_name}, usando resultados de curve_fit si existen.") |
|
|
|
time_to_plot = time |
|
else: |
|
|
|
|
|
|
|
if not use_differential and self.biomass_model and 'biomass' in self.params and self.params['biomass']: |
|
time_fine_curvefit = self.generate_fine_time_grid(time) |
|
if time_fine_curvefit is not None and len(time_fine_curvefit)>0: |
|
biomass_params_values = list(self.params['biomass'].values()) |
|
y_pred_biomass_fine = self.biomass_model(time_fine_curvefit, *biomass_params_values) |
|
|
|
if 'substrate' in self.params and self.params['substrate']: |
|
substrate_params_values = list(self.params['substrate'].values()) |
|
y_pred_substrate_fine = self.substrate(time_fine_curvefit, *substrate_params_values, biomass_params_values) |
|
else: |
|
y_pred_substrate_fine = np.full_like(time_fine_curvefit, np.nan) |
|
|
|
|
|
if 'product' in self.params and self.params['product']: |
|
product_params_values = list(self.params['product'].values()) |
|
y_pred_product_fine = self.product(time_fine_curvefit, *product_params_values, biomass_params_values) |
|
else: |
|
y_pred_product_fine = np.full_like(time_fine_curvefit, np.nan) |
|
|
|
|
|
if not np.all(np.isnan(y_pred_biomass_fine)): |
|
y_pred_biomass = y_pred_biomass_fine |
|
time_to_plot = time_fine_curvefit |
|
if not np.all(np.isnan(y_pred_substrate_fine)): |
|
y_pred_substrate = y_pred_substrate_fine |
|
if not np.all(np.isnan(y_pred_product_fine)): |
|
y_pred_product = y_pred_product_fine |
|
|
|
|
|
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(10, 15)) |
|
fig.suptitle(f'{experiment_name} ({self.model_type.capitalize()})', fontsize=16) |
|
|
|
plots_config = [ |
|
(ax1, biomass, y_pred_biomass, biomass_std, axis_labels['biomass_label'], 'Modelo', self.params.get('biomass', {}), |
|
self.r2.get('biomass', np.nan), self.rmse.get('biomass', np.nan)), |
|
(ax2, substrate, y_pred_substrate, substrate_std, axis_labels['substrate_label'], 'Modelo', self.params.get('substrate', {}), |
|
self.r2.get('substrate', np.nan), self.rmse.get('substrate', np.nan)), |
|
(ax3, product, y_pred_product, product_std, axis_labels['product_label'], 'Modelo', self.params.get('product', {}), |
|
self.r2.get('product', np.nan), self.rmse.get('product', np.nan)) |
|
] |
|
|
|
for idx, (ax, data_exp, y_pred_model, data_std_exp, ylabel, model_name_legend, params_dict, r2_val, rmse_val) in enumerate(plots_config): |
|
|
|
if data_exp is not None and len(data_exp) > 0 and not np.all(np.isnan(data_exp)): |
|
if data_std_exp is not None and len(data_std_exp) == len(data_exp) and not np.all(np.isnan(data_std_exp)): |
|
ax.errorbar(time, data_exp, yerr=data_std_exp, fmt=marker_style, color=point_color, |
|
label='Datos experimentales', capsize=5, elinewidth=1, markeredgewidth=1) |
|
else: |
|
ax.plot(time, data_exp, marker=marker_style, linestyle='', color=point_color, |
|
label='Datos experimentales') |
|
else: |
|
ax.text(0.5, 0.5, 'No hay datos experimentales para mostrar.', |
|
horizontalalignment='center', verticalalignment='center', |
|
transform=ax.transAxes, fontsize=10, color='gray') |
|
|
|
|
|
|
|
if y_pred_model is not None and len(y_pred_model) > 0 and not np.all(np.isnan(y_pred_model)): |
|
ax.plot(time_to_plot, y_pred_model, linestyle=line_style, color=line_color, label=model_name_legend) |
|
elif idx == 0 and y_pred_biomass is None: |
|
ax.text(0.5, 0.6, 'Modelo de biomasa no ajustado.', |
|
horizontalalignment='center', verticalalignment='center', |
|
transform=ax.transAxes, fontsize=10, color='red') |
|
elif (idx == 1 and y_pred_substrate is None) or (idx == 2 and y_pred_product is None) : |
|
if 'biomass' not in self.params or not self.params['biomass']: |
|
ax.text(0.5, 0.4, 'Modelo no ajustado (depende de biomasa).', |
|
horizontalalignment='center', verticalalignment='center', |
|
transform=ax.transAxes, fontsize=10, color='orange') |
|
elif y_pred_model is None: |
|
ax.text(0.5, 0.4, 'Modelo no ajustado.', |
|
horizontalalignment='center', verticalalignment='center', |
|
transform=ax.transAxes, fontsize=10, color='orange') |
|
|
|
|
|
ax.set_xlabel(axis_labels['x_label']) |
|
ax.set_ylabel(ylabel) |
|
if show_legend: |
|
ax.legend(loc=legend_position) |
|
ax.set_title(f'{ylabel}') |
|
|
|
if show_params and params_dict and all(isinstance(v, (int, float)) and np.isfinite(v) for v in params_dict.values()): |
|
param_text = '\n'.join([f"{k} = {v:.3g}" for k, v in params_dict.items()]) |
|
|
|
r2_display = f"{r2_val:.3f}" if np.isfinite(r2_val) else "N/A" |
|
rmse_display = f"{rmse_val:.3f}" if np.isfinite(rmse_val) else "N/A" |
|
text = f"{param_text}\nR² = {r2_display}\nRMSE = {rmse_display}" |
|
|
|
if params_position == 'outside right': |
|
bbox_props = dict(boxstyle='round,pad=0.3', facecolor='wheat', alpha=0.5) |
|
|
|
fig.subplots_adjust(right=0.75) |
|
ax.annotate(text, xy=(1.05, 0.5), xycoords='axes fraction', |
|
xytext=(10,0), textcoords='offset points', |
|
verticalalignment='center', horizontalalignment='left', |
|
bbox=bbox_props) |
|
else: |
|
text_x, ha = (0.95, 'right') if 'right' in params_position else (0.05, 'left') |
|
text_y, va = (0.95, 'top') if 'upper' in params_position else (0.05, 'bottom') |
|
ax.text(text_x, text_y, text, transform=ax.transAxes, |
|
verticalalignment=va, horizontalalignment=ha, |
|
bbox={'boxstyle': 'round,pad=0.3', 'facecolor':'wheat', 'alpha':0.5}) |
|
elif show_params and not params_dict : |
|
ax.text(0.5, 0.3, 'Parámetros no disponibles.', |
|
horizontalalignment='center', verticalalignment='center', |
|
transform=ax.transAxes, fontsize=9, color='grey') |
|
|
|
|
|
plt.tight_layout(rect=[0, 0.03, 1, 0.95]) |
|
|
|
buf = io.BytesIO() |
|
fig.savefig(buf, format='png', bbox_inches='tight') |
|
buf.seek(0) |
|
image = Image.open(buf).convert("RGB") |
|
plt.close(fig) |
|
|
|
return image |
|
|
|
def plot_combined_results(self, time, biomass, substrate, product, |
|
y_pred_biomass, y_pred_substrate, y_pred_product, |
|
biomass_std=None, substrate_std=None, product_std=None, |
|
experiment_name='', legend_position='best', params_position='upper right', |
|
show_legend=True, show_params=True, |
|
style='whitegrid', |
|
line_color='#0000FF', point_color='#000000', line_style='-', marker_style='o', |
|
use_differential=False, axis_labels=None): |
|
|
|
|
|
if y_pred_biomass is None and not use_differential: |
|
print(f"No se pudo ajustar biomasa para {experiment_name} con {self.model_type} (combinado). Omitiendo figura.") |
|
return None |
|
if use_differential and ('biomass' not in self.params or not self.params['biomass']): |
|
print(f"Se solicitó usar EDO (combinado) pero no hay parámetros de biomasa para {experiment_name}. Omitiendo EDO.") |
|
use_differential = False |
|
|
|
|
|
if axis_labels is None: |
|
axis_labels = { |
|
'x_label': 'Tiempo', |
|
'biomass_label': 'Biomasa', |
|
'substrate_label': 'Sustrato', |
|
'product_label': 'Producto' |
|
} |
|
|
|
sns.set_style(style) |
|
time_to_plot = time |
|
|
|
if use_differential and 'biomass' in self.params and self.params['biomass']: |
|
X_ode, S_ode, P_ode, time_fine_ode = self.solve_differential_equations(time, biomass, substrate, product) |
|
if X_ode is not None: |
|
y_pred_biomass, y_pred_substrate, y_pred_product = X_ode, S_ode, P_ode |
|
time_to_plot = time_fine_ode |
|
else: |
|
print(f"Fallo al resolver EDOs para {experiment_name} (combinado), usando resultados de curve_fit si existen.") |
|
time_to_plot = time |
|
else: |
|
if not use_differential and self.biomass_model and 'biomass' in self.params and self.params['biomass']: |
|
time_fine_curvefit = self.generate_fine_time_grid(time) |
|
if time_fine_curvefit is not None and len(time_fine_curvefit)>0: |
|
biomass_params_values = list(self.params['biomass'].values()) |
|
y_pred_biomass_fine = self.biomass_model(time_fine_curvefit, *biomass_params_values) |
|
|
|
if 'substrate' in self.params and self.params['substrate']: |
|
substrate_params_values = list(self.params['substrate'].values()) |
|
y_pred_substrate_fine = self.substrate(time_fine_curvefit, *substrate_params_values, biomass_params_values) |
|
else: |
|
y_pred_substrate_fine = np.full_like(time_fine_curvefit, np.nan) |
|
|
|
if 'product' in self.params and self.params['product']: |
|
product_params_values = list(self.params['product'].values()) |
|
y_pred_product_fine = self.product(time_fine_curvefit, *product_params_values, biomass_params_values) |
|
else: |
|
y_pred_product_fine = np.full_like(time_fine_curvefit, np.nan) |
|
|
|
if not np.all(np.isnan(y_pred_biomass_fine)): |
|
y_pred_biomass = y_pred_biomass_fine |
|
time_to_plot = time_fine_curvefit |
|
if not np.all(np.isnan(y_pred_substrate_fine)): |
|
y_pred_substrate = y_pred_substrate_fine |
|
if not np.all(np.isnan(y_pred_product_fine)): |
|
y_pred_product = y_pred_product_fine |
|
|
|
|
|
fig, ax1 = plt.subplots(figsize=(12, 7)) |
|
fig.suptitle(f'{experiment_name} ({self.model_type.capitalize()})', fontsize=16) |
|
|
|
colors = {'Biomasa': 'blue', 'Sustrato': 'green', 'Producto': 'red'} |
|
data_colors = {'Biomasa': 'darkblue', 'Sustrato': 'darkgreen', 'Producto': 'darkred'} |
|
model_colors = {'Biomasa': 'cornflowerblue', 'Sustrato': 'limegreen', 'Producto': 'salmon'} |
|
|
|
|
|
ax1.set_xlabel(axis_labels['x_label']) |
|
ax1.set_ylabel(axis_labels['biomass_label'], color=colors['Biomasa']) |
|
if biomass is not None and len(biomass) > 0 and not np.all(np.isnan(biomass)): |
|
if biomass_std is not None and len(biomass_std) == len(biomass) and not np.all(np.isnan(biomass_std)): |
|
ax1.errorbar(time, biomass, yerr=biomass_std, fmt=marker_style, color=data_colors['Biomasa'], |
|
label=f'{axis_labels["biomass_label"]} (Datos)', capsize=3, elinewidth=1, markersize=5) |
|
else: |
|
ax1.plot(time, biomass, marker=marker_style, linestyle='', color=data_colors['Biomasa'], |
|
label=f'{axis_labels["biomass_label"]} (Datos)', markersize=5) |
|
if y_pred_biomass is not None and len(y_pred_biomass) > 0 and not np.all(np.isnan(y_pred_biomass)): |
|
ax1.plot(time_to_plot, y_pred_biomass, linestyle=line_style, color=model_colors['Biomasa'], |
|
label=f'{axis_labels["biomass_label"]} (Modelo)') |
|
ax1.tick_params(axis='y', labelcolor=colors['Biomasa']) |
|
|
|
ax2 = ax1.twinx() |
|
ax2.set_ylabel(axis_labels['substrate_label'], color=colors['Sustrato']) |
|
if substrate is not None and len(substrate) > 0 and not np.all(np.isnan(substrate)): |
|
if substrate_std is not None and len(substrate_std) == len(substrate) and not np.all(np.isnan(substrate_std)): |
|
ax2.errorbar(time, substrate, yerr=substrate_std, fmt=marker_style, color=data_colors['Sustrato'], |
|
label=f'{axis_labels["substrate_label"]} (Datos)', capsize=3, elinewidth=1, markersize=5) |
|
else: |
|
ax2.plot(time, substrate, marker=marker_style, linestyle='', color=data_colors['Sustrato'], |
|
label=f'{axis_labels["substrate_label"]} (Datos)', markersize=5) |
|
if y_pred_substrate is not None and len(y_pred_substrate) > 0 and not np.all(np.isnan(y_pred_substrate)): |
|
ax2.plot(time_to_plot, y_pred_substrate, linestyle=line_style, color=model_colors['Sustrato'], |
|
label=f'{axis_labels["substrate_label"]} (Modelo)') |
|
ax2.tick_params(axis='y', labelcolor=colors['Sustrato']) |
|
|
|
ax3 = ax1.twinx() |
|
ax3.spines["right"].set_position(("axes", 1.15)) |
|
ax3.set_frame_on(True) |
|
ax3.patch.set_visible(False) |
|
|
|
|
|
ax3.set_ylabel(axis_labels['product_label'], color=colors['Producto']) |
|
if product is not None and len(product) > 0 and not np.all(np.isnan(product)): |
|
if product_std is not None and len(product_std) == len(product) and not np.all(np.isnan(product_std)): |
|
ax3.errorbar(time, product, yerr=product_std, fmt=marker_style, color=data_colors['Producto'], |
|
label=f'{axis_labels["product_label"]} (Datos)', capsize=3, elinewidth=1, markersize=5) |
|
else: |
|
ax3.plot(time, product, marker=marker_style, linestyle='', color=data_colors['Producto'], |
|
label=f'{axis_labels["product_label"]} (Datos)', markersize=5) |
|
if y_pred_product is not None and len(y_pred_product) > 0 and not np.all(np.isnan(y_pred_product)): |
|
ax3.plot(time_to_plot, y_pred_product, linestyle=line_style, color=model_colors['Producto'], |
|
label=f'{axis_labels["product_label"]} (Modelo)') |
|
ax3.tick_params(axis='y', labelcolor=colors['Producto']) |
|
|
|
|
|
lines_labels_collect = [] |
|
for ax_current in [ax1, ax2, ax3]: |
|
h, l = ax_current.get_legend_handles_labels() |
|
if h: |
|
lines_labels_collect.append((h,l)) |
|
|
|
if lines_labels_collect: |
|
lines, labels = [sum(lol, []) for lol in zip(*[(h,l) for h,l in lines_labels_collect])] |
|
|
|
unique_labels_dict = dict(zip(labels, lines)) |
|
if show_legend: |
|
ax1.legend(unique_labels_dict.values(), unique_labels_dict.keys(), loc=legend_position) |
|
|
|
|
|
if show_params: |
|
texts_to_display = [] |
|
param_categories = [ |
|
(axis_labels['biomass_label'], self.params.get('biomass', {}), self.r2.get('biomass', np.nan), self.rmse.get('biomass', np.nan)), |
|
(axis_labels['substrate_label'], self.params.get('substrate', {}), self.r2.get('substrate', np.nan), self.rmse.get('substrate', np.nan)), |
|
(axis_labels['product_label'], self.params.get('product', {}), self.r2.get('product', np.nan), self.rmse.get('product', np.nan)) |
|
] |
|
|
|
for label, params_dict, r2_val, rmse_val in param_categories: |
|
if params_dict and all(isinstance(v, (int, float)) and np.isfinite(v) for v in params_dict.values()): |
|
param_text = '\n'.join([f" {k} = {v:.3g}" for k, v in params_dict.items()]) |
|
r2_display = f"{r2_val:.3f}" if np.isfinite(r2_val) else "N/A" |
|
rmse_display = f"{rmse_val:.3f}" if np.isfinite(rmse_val) else "N/A" |
|
texts_to_display.append(f"{label}:\n{param_text}\n R² = {r2_display}\n RMSE = {rmse_display}") |
|
elif params_dict: |
|
texts_to_display.append(f"{label}:\n Parámetros no válidos o N/A") |
|
|
|
|
|
|
|
total_text = "\n\n".join(texts_to_display) |
|
|
|
if total_text: |
|
if params_position == 'outside right': |
|
fig.subplots_adjust(right=0.70) |
|
bbox_props = dict(boxstyle='round,pad=0.3', facecolor='wheat', alpha=0.7) |
|
|
|
fig.text(0.72, 0.5, total_text, transform=fig.transFigure, |
|
verticalalignment='center', horizontalalignment='left', |
|
bbox=bbox_props, fontsize=8) |
|
|
|
else: |
|
text_x, ha = (0.95, 'right') if 'right' in params_position else (0.05, 'left') |
|
text_y, va = (0.95, 'top') if 'upper' in params_position else (0.05, 'bottom') |
|
ax1.text(text_x, text_y, total_text, transform=ax1.transAxes, |
|
verticalalignment=va, horizontalalignment=ha, |
|
bbox={'boxstyle':'round,pad=0.3', 'facecolor':'wheat', 'alpha':0.7}, fontsize=8) |
|
|
|
plt.tight_layout(rect=[0, 0.03, 1, 0.95]) |
|
|
|
if params_position == 'outside right': |
|
fig.subplots_adjust(right=0.70) |
|
|
|
|
|
buf = io.BytesIO() |
|
fig.savefig(buf, format='png', bbox_inches='tight') |
|
buf.seek(0) |
|
image = Image.open(buf).convert("RGB") |
|
plt.close(fig) |
|
|
|
return image |
|
|
|
def process_all_data(file, legend_position, params_position, model_types_selected, experiment_names_str, |
|
lower_bounds_str, upper_bounds_str, |
|
mode, style, line_color, point_color, line_style, marker_style, |
|
show_legend, show_params, use_differential, maxfev_val, |
|
axis_labels_dict): |
|
|
|
if file is None: |
|
return [], pd.DataFrame(), "Por favor, sube un archivo Excel." |
|
|
|
try: |
|
|
|
try: |
|
xls = pd.ExcelFile(file.name) |
|
except AttributeError: |
|
xls = pd.ExcelFile(file) |
|
|
|
sheet_names = xls.sheet_names |
|
if not sheet_names: |
|
return [], pd.DataFrame(), "El archivo Excel está vacío o no contiene hojas." |
|
|
|
except Exception as e: |
|
return [], pd.DataFrame(), f"Error al leer el archivo Excel: {e}" |
|
|
|
figures = [] |
|
comparison_data = [] |
|
experiment_counter = 0 |
|
experiment_names_list = experiment_names_str.strip().split('\n') if experiment_names_str.strip() else [] |
|
all_plot_messages = [] |
|
|
|
|
|
for sheet_name_idx, sheet_name in enumerate(sheet_names): |
|
current_experiment_name_base = (experiment_names_list[sheet_name_idx] |
|
if sheet_name_idx < len(experiment_names_list) and experiment_names_list[sheet_name_idx] |
|
else f"Hoja '{sheet_name}'") |
|
try: |
|
df = pd.read_excel(xls, sheet_name=sheet_name, header=[0, 1]) |
|
if df.empty: |
|
all_plot_messages.append(f"Hoja '{sheet_name}' está vacía.") |
|
continue |
|
|
|
if not any(col_level2 == 'Tiempo' for _, col_level2 in df.columns): |
|
all_plot_messages.append(f"Hoja '{sheet_name}' no contiene la subcolumna 'Tiempo'. Saltando hoja.") |
|
continue |
|
|
|
except Exception as e: |
|
all_plot_messages.append(f"Error al leer la hoja '{sheet_name}': {e}. Saltando hoja.") |
|
continue |
|
|
|
|
|
model_dummy_for_sheet = BioprocessModel() |
|
try: |
|
model_dummy_for_sheet.process_data(df) |
|
except ValueError as e: |
|
all_plot_messages.append(f"Error procesando datos de la hoja '{sheet_name}': {e}. Saltando hoja.") |
|
continue |
|
|
|
time_exp_full = model_dummy_for_sheet.time |
|
|
|
|
|
if mode == 'independent': |
|
|
|
|
|
|
|
grouped_cols = df.columns.get_level_values(0).unique() |
|
|
|
for exp_idx, exp_col_name in enumerate(grouped_cols): |
|
current_experiment_name = f"{current_experiment_name_base} - Exp {exp_idx + 1} ({exp_col_name})" |
|
exp_df = df[exp_col_name] |
|
|
|
try: |
|
time_exp = exp_df['Tiempo'].dropna().values |
|
|
|
biomass_exp = exp_df['Biomasa'].dropna().astype(float).values if 'Biomasa' in exp_df else np.array([]) |
|
substrate_exp = exp_df['Sustrato'].dropna().astype(float).values if 'Sustrato' in exp_df else np.array([]) |
|
product_exp = exp_df['Producto'].dropna().astype(float).values if 'Producto' in exp_df else np.array([]) |
|
|
|
if len(time_exp) == 0: |
|
all_plot_messages.append(f"No hay datos de tiempo para {current_experiment_name}. Saltando.") |
|
continue |
|
if len(biomass_exp) == 0 : |
|
all_plot_messages.append(f"No hay datos de biomasa para {current_experiment_name}. Saltando modelos para este experimento.") |
|
|
|
for model_type_iter in model_types_selected: |
|
comparison_data.append({ |
|
'Experimento': current_experiment_name, 'Modelo': model_type_iter.capitalize(), |
|
**{f'R² {comp}': np.nan for comp in ['Biomasa', 'Sustrato', 'Producto']}, |
|
**{f'RMSE {comp}': np.nan for comp in ['Biomasa', 'Sustrato', 'Producto']} |
|
}) |
|
continue |
|
|
|
|
|
except KeyError as e: |
|
all_plot_messages.append(f"Faltan columnas (Tiempo, Biomasa, Sustrato, Producto) en '{current_experiment_name}': {e}. Saltando.") |
|
continue |
|
except Exception as e_data: |
|
all_plot_messages.append(f"Error extrayendo datos para '{current_experiment_name}': {e_data}. Saltando.") |
|
continue |
|
|
|
|
|
|
|
|
|
|
|
biomass_std_exp, substrate_std_exp, product_std_exp = None, None, None |
|
|
|
for model_type_iter in model_types_selected: |
|
model_instance = BioprocessModel(model_type=model_type_iter, maxfev=maxfev_val) |
|
model_instance.fit_model() |
|
|
|
y_pred_biomass = model_instance.fit_biomass(time_exp, biomass_exp) |
|
y_pred_substrate, y_pred_product = None, None |
|
|
|
if y_pred_biomass is not None and model_instance.params.get('biomass'): |
|
if len(substrate_exp) > 0 : |
|
y_pred_substrate = model_instance.fit_substrate(time_exp, substrate_exp, model_instance.params['biomass']) |
|
if len(product_exp) > 0: |
|
y_pred_product = model_instance.fit_product(time_exp, product_exp, model_instance.params['biomass']) |
|
else: |
|
all_plot_messages.append(f"Ajuste de biomasa falló para {current_experiment_name} con modelo {model_type_iter}.") |
|
|
|
|
|
comparison_data.append({ |
|
'Experimento': current_experiment_name, |
|
'Modelo': model_type_iter.capitalize(), |
|
'R² Biomasa': model_instance.r2.get('biomass', np.nan), |
|
'RMSE Biomasa': model_instance.rmse.get('biomass', np.nan), |
|
'R² Sustrato': model_instance.r2.get('substrate', np.nan), |
|
'RMSE Sustrato': model_instance.rmse.get('substrate', np.nan), |
|
'R² Producto': model_instance.r2.get('product', np.nan), |
|
'RMSE Producto': model_instance.rmse.get('product', np.nan) |
|
}) |
|
|
|
fig = model_instance.plot_results( |
|
time_exp, biomass_exp, substrate_exp, product_exp, |
|
y_pred_biomass, y_pred_substrate, y_pred_product, |
|
biomass_std_exp, substrate_std_exp, product_std_exp, |
|
current_experiment_name, legend_position, params_position, |
|
show_legend, show_params, style, |
|
line_color, point_color, line_style, marker_style, |
|
use_differential, axis_labels_dict |
|
) |
|
if fig: figures.append(fig) |
|
experiment_counter +=1 |
|
|
|
|
|
|
|
elif mode in ['average', 'combinado']: |
|
current_experiment_name = f"{current_experiment_name_base} - Promedio" |
|
|
|
|
|
|
|
time_avg = model_dummy_for_sheet.time |
|
biomass_avg = model_dummy_for_sheet.dataxp[-1] if model_dummy_for_sheet.dataxp else np.array([]) |
|
substrate_avg = model_dummy_for_sheet.datasp[-1] if model_dummy_for_sheet.datasp else np.array([]) |
|
product_avg = model_dummy_for_sheet.datapp[-1] if model_dummy_for_sheet.datapp else np.array([]) |
|
|
|
biomass_std_avg = model_dummy_for_sheet.datax_std[-1] if model_dummy_for_sheet.datax_std and len(model_dummy_for_sheet.datax_std[-1]) == len(biomass_avg) else None |
|
substrate_std_avg = model_dummy_for_sheet.datas_std[-1] if model_dummy_for_sheet.datas_std and len(model_dummy_for_sheet.datas_std[-1]) == len(substrate_avg) else None |
|
product_std_avg = model_dummy_for_sheet.datap_std[-1] if model_dummy_for_sheet.datap_std and len(model_dummy_for_sheet.datap_std[-1]) == len(product_avg) else None |
|
|
|
if len(time_avg) == 0: |
|
all_plot_messages.append(f"No hay datos de tiempo para el promedio de '{sheet_name}'. Saltando.") |
|
continue |
|
if len(biomass_avg) == 0: |
|
all_plot_messages.append(f"No hay datos de biomasa promedio para '{sheet_name}'. Saltando modelos.") |
|
for model_type_iter in model_types_selected: |
|
comparison_data.append({ |
|
'Experimento': current_experiment_name, 'Modelo': model_type_iter.capitalize(), |
|
**{f'R² {comp}': np.nan for comp in ['Biomasa', 'Sustrato', 'Producto']}, |
|
**{f'RMSE {comp}': np.nan for comp in ['Biomasa', 'Sustrato', 'Producto']} |
|
}) |
|
continue |
|
|
|
|
|
for model_type_iter in model_types_selected: |
|
model_instance = BioprocessModel(model_type=model_type_iter, maxfev=maxfev_val) |
|
model_instance.fit_model() |
|
|
|
y_pred_biomass = model_instance.fit_biomass(time_avg, biomass_avg) |
|
y_pred_substrate, y_pred_product = None, None |
|
|
|
if y_pred_biomass is not None and model_instance.params.get('biomass'): |
|
if len(substrate_avg) > 0: |
|
y_pred_substrate = model_instance.fit_substrate(time_avg, substrate_avg, model_instance.params['biomass']) |
|
if len(product_avg) > 0: |
|
y_pred_product = model_instance.fit_product(time_avg, product_avg, model_instance.params['biomass']) |
|
else: |
|
all_plot_messages.append(f"Ajuste de biomasa promedio falló para {current_experiment_name} con modelo {model_type_iter}.") |
|
|
|
|
|
comparison_data.append({ |
|
'Experimento': current_experiment_name, |
|
'Modelo': model_type_iter.capitalize(), |
|
'R² Biomasa': model_instance.r2.get('biomass', np.nan), |
|
'RMSE Biomasa': model_instance.rmse.get('biomass', np.nan), |
|
'R² Sustrato': model_instance.r2.get('substrate', np.nan), |
|
'RMSE Sustrato': model_instance.rmse.get('substrate', np.nan), |
|
'R² Producto': model_instance.r2.get('product', np.nan), |
|
'RMSE Producto': model_instance.rmse.get('product', np.nan) |
|
}) |
|
|
|
plot_func = model_instance.plot_combined_results if mode == 'combinado' else model_instance.plot_results |
|
fig = plot_func( |
|
time_avg, biomass_avg, substrate_avg, product_avg, |
|
y_pred_biomass, y_pred_substrate, y_pred_product, |
|
biomass_std_avg, substrate_std_avg, product_std_avg, |
|
current_experiment_name, legend_position, params_position, |
|
show_legend, show_params, style, |
|
line_color, point_color, line_style, marker_style, |
|
use_differential, axis_labels_dict |
|
) |
|
if fig: figures.append(fig) |
|
experiment_counter +=1 |
|
|
|
|
|
comparison_df = pd.DataFrame(comparison_data) |
|
if not comparison_df.empty: |
|
|
|
for col in ['R² Biomasa', 'RMSE Biomasa', 'R² Sustrato', 'RMSE Sustrato', 'R² Producto', 'RMSE Producto']: |
|
if col in comparison_df.columns: |
|
comparison_df[col] = pd.to_numeric(comparison_df[col], errors='coerce') |
|
|
|
comparison_df_sorted = comparison_df.sort_values( |
|
by=['Experimento', 'Modelo', 'R² Biomasa', 'R² Sustrato', 'R² Producto', 'RMSE Biomasa', 'RMSE Sustrato', 'RMSE Producto'], |
|
ascending=[True, True, False, False, False, True, True, True] |
|
).reset_index(drop=True) |
|
else: |
|
comparison_df_sorted = pd.DataFrame(columns=[ |
|
'Experimento', 'Modelo', 'R² Biomasa', 'RMSE Biomasa', |
|
'R² Sustrato', 'RMSE Sustrato', 'R² Producto', 'RMSE Producto' |
|
]) |
|
|
|
final_message = "Procesamiento completado." |
|
if all_plot_messages: |
|
final_message += " Mensajes:\n" + "\n".join(all_plot_messages) |
|
if not figures and not comparison_df_sorted.empty: |
|
final_message += "\nNo se generaron gráficos, pero hay datos en la tabla." |
|
elif not figures and comparison_df_sorted.empty: |
|
final_message += "\nNo se generaron gráficos ni datos para la tabla." |
|
|
|
|
|
return figures, comparison_df_sorted, final_message |
|
|
|
|
|
def create_interface(): |
|
with gr.Blocks(theme=gr.themes.Soft()) as demo: |
|
gr.Markdown("# Modelos Cinéticos de Bioprocesos") |
|
gr.Markdown(r""" |
|
Análisis y visualización de datos de bioprocesos utilizando modelos cinéticos como Logístico, Gompertz y Moser para el crecimiento de biomasa, |
|
y el modelo de Luedeking-Piret para el consumo de sustrato y la formación de producto. |
|
|
|
**Instrucciones:** |
|
1. Sube un archivo Excel. El archivo debe tener una estructura de MultiIndex en las columnas: |
|
- Nivel 0: Nombre del experimento/tratamiento (ej: "Control", "Tratamiento A") |
|
- Nivel 1: Tipo de dato ("Tiempo", "Biomasa", "Sustrato", "Producto") |
|
- Si hay réplicas, deben estar como columnas separadas bajo el mismo nombre de experimento (Nivel 0) y tipo de dato (Nivel 1). |
|
Ejemplo: (Control, Biomasa, Rep1), (Control, Biomasa, Rep2). El código promediará estas réplicas para los modos "average" y "combinado". |
|
Para el modo "independent", se asume una sola serie de datos por (Experimento, TipoDato). |
|
2. Selecciona el/los tipo(s) de modelo(s) de biomasa a ajustar. |
|
3. Elige el modo de análisis: |
|
- `independent`: Analiza cada experimento (columna de Nivel 0) individualmente. |
|
- `average`: Promedia los datos de todos los experimentos dentro de una hoja y ajusta los modelos a estos promedios. Se grafica en subplots separados. |
|
- `combinado`: Similar a `average`, pero grafica Biomasa, Sustrato y Producto en un solo gráfico con múltiples ejes Y. |
|
4. Configura las opciones de graficación (leyenda, parámetros, estilos, colores, etc.). |
|
5. (Opcional) Personaliza los nombres de los experimentos y los títulos de los ejes. |
|
6. Haz clic en "Simular" para generar los gráficos y la tabla comparativa. |
|
7. Puedes exportar la tabla de resultados a Excel. |
|
""") |
|
gr.Markdown(r""" |
|
## Ecuaciones Diferenciales Utilizadas |
|
|
|
**Biomasa:** |
|
|
|
- Logístico: |
|
$$ |
|
\frac{dX}{dt} = \mu_m X\left(1 - \frac{X}{X_m}\right) |
|
$$ |
|
Solución integral: $X(t) = \frac{X_0 \exp(\mu_m t)}{1 - (X_0/X_m)(1 - \exp(\mu_m t))}$ |
|
|
|
- Gompertz (Modificado): |
|
$$ |
|
X(t) = X_m \exp\left(-\exp\left(\left(\frac{\mu_m e}{X_m}\right)(\text{lag}-t)+1\right)\right) |
|
$$ |
|
Ecuación diferencial: |
|
$$ |
|
\frac{dX}{dt} = X(t)\left(\frac{\mu_m e}{X_m}\right)\exp\left(\left(\frac{\mu_m e}{X_m}\right)(\text{lag}-t)+1\right) |
|
$$ |
|
|
|
- Moser (simplificado, asumiendo $S \gg K_s$ o crecimiento no limitado por sustrato modelado explícitamente aquí): |
|
$$ |
|
X(t)=X_m(1-e^{-\mu_m(t-K_s)}) |
|
$$ |
|
Ecuación diferencial (forma simplificada, no estándar de Moser que depende de S): |
|
$$ |
|
\frac{dX}{dt}=\mu_m(X_m - X) |
|
$$ |
|
|
|
**Sustrato y Producto (Luedeking-Piret):** |
|
$$ |
|
\frac{dS}{dt} = -p \frac{dX}{dt} - q X \quad \Rightarrow \quad S(t) = S_0 - p(X(t)-X_0) - q \int_0^t X(\tau)d\tau |
|
$$ |
|
|
|
$$ |
|
\frac{dP}{dt} = \alpha \frac{dX}{dt} + \beta X \quad \Rightarrow \quad P(t) = P_0 + \alpha(X(t)-X_0) + \beta \int_0^t X(\tau)d\tau |
|
$$ |
|
Donde $X_0, S_0, P_0$ son las concentraciones iniciales. |
|
Parámetros: |
|
- $X_m$: Máxima concentración de biomasa. |
|
- $\mu_m$: Máxima tasa de crecimiento específico. |
|
- $X_0$: Concentración inicial de biomasa. |
|
- $\text{lag}$: Duración de la fase de latencia. |
|
- $K_s$: Constante de afinidad (en el modelo de Moser simplificado, actúa como un tiempo de retardo). |
|
- $p$: Coeficiente de rendimiento de biomasa a partir de sustrato (asociado al crecimiento). $1/Y_{X/S}^{crecimiento}$. |
|
- $q$: Coeficiente de mantenimiento. $m_S$. |
|
- $\alpha$: Coeficiente de formación de producto asociado al crecimiento. $Y_{P/X}^{crecimiento}$. |
|
- $\beta$: Coeficiente de formación de producto no asociado al crecimiento. $m_P$. |
|
""") |
|
|
|
with gr.Row(): |
|
file_input = gr.File(label="Subir archivo Excel (.xlsx)", file_types=['.xlsx']) |
|
mode = gr.Radio(["independent", "average", "combinado"], label="Modo de Análisis", value="independent", |
|
info="Independent: cada experimento. Average/Combinado: promedio de la hoja.") |
|
|
|
with gr.Accordion("Configuración de Modelos y Simulación", open=False): |
|
model_types_selected = gr.CheckboxGroup( |
|
choices=["logistic", "gompertz", "moser"], |
|
label="Tipo(s) de Modelo de Biomasa", |
|
value=["logistic"] |
|
) |
|
use_differential = gr.Checkbox(label="Usar Ecuaciones Diferenciales para Graficar (experimental)", value=False, |
|
info="Si se marca, las curvas se generan resolviendo las EDOs. Si no, por ajuste directo de las formas integradas.") |
|
maxfev_input = gr.Number(label="maxfev (Máx. evaluaciones para el ajuste)", value=50000, minimum=1000, step=1000) |
|
experiment_names_str = gr.Textbox( |
|
label="Nombres de los experimentos/hojas (uno por línea, opcional)", |
|
placeholder="Nombre para Hoja 1\nNombre para Hoja 2\n...", |
|
lines=3, |
|
info="Si se deja vacío, se usarán los nombres de las hojas o 'Exp X'." |
|
) |
|
with gr.Accordion("Configuración de Gráficos", open=False): |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
legend_position = gr.Radio( |
|
choices=["upper left", "upper right", "lower left", "lower right", "best"], |
|
label="Posición de Leyenda", value="best" |
|
) |
|
show_legend = gr.Checkbox(label="Mostrar Leyenda", value=True) |
|
with gr.Column(scale=1): |
|
params_position = gr.Radio( |
|
choices=["upper left", "upper right", "lower left", "lower right", "outside right"], |
|
label="Posición de Parámetros", value="upper right" |
|
) |
|
show_params = gr.Checkbox(label="Mostrar Parámetros", value=True) |
|
|
|
with gr.Row(): |
|
style_dropdown = gr.Dropdown(choices=['white', 'dark', 'whitegrid', 'darkgrid', 'ticks'], |
|
label="Estilo de Gráfico (Seaborn)", value='whitegrid') |
|
line_color_picker = gr.ColorPicker(label="Color de Línea (Modelo)", value='#0072B2') |
|
point_color_picker = gr.ColorPicker(label="Color de Puntos (Datos)", value='#D55E00') |
|
|
|
with gr.Row(): |
|
line_style_dropdown = gr.Dropdown(choices=['-', '--', '-.', ':'], label="Estilo de Línea", value='-') |
|
marker_style_dropdown = gr.Dropdown(choices=['o', 's', '^', 'v', 'D', 'x', '+', '*'], |
|
label="Estilo de Marcador (Puntos)", value='o') |
|
with gr.Row(): |
|
x_axis_label_input = gr.Textbox(label="Título Eje X", value="Tiempo (h)", placeholder="Tiempo (unidades)") |
|
biomass_axis_label_input = gr.Textbox(label="Título Eje Y (Biomasa)", value="Biomasa (g/L)", placeholder="Biomasa (unidades)") |
|
with gr.Row(): |
|
substrate_axis_label_input = gr.Textbox(label="Título Eje Y (Sustrato)", value="Sustrato (g/L)", placeholder="Sustrato (unidades)") |
|
product_axis_label_input = gr.Textbox(label="Título Eje Y (Producto)", value="Producto (g/L)", placeholder="Producto (unidades)") |
|
|
|
|
|
|
|
|
|
with gr.Accordion("Configuración Avanzada de Ajuste (No implementado aún)", open=False): |
|
with gr.Row(): |
|
lower_bounds_str = gr.Textbox(label="Lower Bounds (no usado actualmente)", lines=3) |
|
upper_bounds_str = gr.Textbox(label="Upper Bounds (no usado actualmente)", lines=3) |
|
|
|
simulate_btn = gr.Button("Simular y Graficar", variant="primary") |
|
|
|
status_message = gr.Textbox(label="Estado del Procesamiento", interactive=False) |
|
|
|
output_gallery = gr.Gallery(label="Resultados Gráficos", columns=[2,1], height='auto', object_fit="contain") |
|
|
|
output_table = gr.Dataframe( |
|
label="Tabla Comparativa de Modelos (Ordenada por R² Biomasa Descendente)", |
|
headers=["Experimento", "Modelo", "R² Biomasa", "RMSE Biomasa", |
|
"R² Sustrato", "RMSE Sustrato", "R² Producto", "RMSE Producto"], |
|
interactive=False, wrap=True |
|
) |
|
|
|
state_df = gr.State(pd.DataFrame()) |
|
|
|
def run_simulation_interface(file, legend_pos, params_pos, models_sel, analysis_mode, exp_names, |
|
low_bounds, up_bounds, plot_style, |
|
line_col, point_col, line_sty, marker_sty, |
|
show_leg, show_par, use_diff, maxfev, |
|
x_label, biomass_label, substrate_label, product_label): |
|
if file is None: |
|
return [], pd.DataFrame(), "Error: Por favor, sube un archivo Excel." |
|
|
|
axis_labels = { |
|
'x_label': x_label if x_label else 'Tiempo', |
|
'biomass_label': biomass_label if biomass_label else 'Biomasa', |
|
'substrate_label': substrate_label if substrate_label else 'Sustrato', |
|
'product_label': product_label if product_label else 'Producto' |
|
} |
|
|
|
if not models_sel: |
|
return [], pd.DataFrame(), "Error: Por favor, selecciona al menos un tipo de modelo de biomasa." |
|
|
|
|
|
figures, comparison_df, message = process_all_data( |
|
file, legend_pos, params_pos, models_sel, exp_names, |
|
low_bounds, up_bounds, analysis_mode, plot_style, |
|
line_col, point_col, line_sty, marker_sty, |
|
show_leg, show_par, use_diff, int(maxfev), |
|
axis_labels |
|
) |
|
return figures, comparison_df, message, comparison_df |
|
|
|
simulate_btn.click( |
|
fn=run_simulation_interface, |
|
inputs=[ |
|
file_input, legend_position, params_position, model_types_selected, mode, experiment_names_str, |
|
lower_bounds_str, upper_bounds_str, style_dropdown, |
|
line_color_picker, point_color_picker, line_style_dropdown, marker_style_dropdown, |
|
show_legend, show_params, use_differential, maxfev_input, |
|
x_axis_label_input, biomass_axis_label_input, substrate_axis_label_input, product_axis_label_input |
|
], |
|
outputs=[output_gallery, output_table, status_message, state_df] |
|
) |
|
|
|
def export_excel_interface(df_to_export): |
|
if df_to_export is None or df_to_export.empty: |
|
|
|
with tempfile.NamedTemporaryFile(suffix=".txt", delete=False) as tmp: |
|
tmp.write(b"No hay datos para exportar.") |
|
return tmp.name |
|
|
|
|
|
|
|
try: |
|
with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False, mode='w+b') as tmp: |
|
df_to_export.to_excel(tmp.name, index=False) |
|
return tmp.name |
|
except Exception as e: |
|
|
|
with tempfile.NamedTemporaryFile(suffix=".txt", delete=False) as tmp: |
|
tmp.write(f"Error al exportar a Excel: {e}".encode()) |
|
return tmp.name |
|
|
|
|
|
export_btn = gr.Button("Exportar Tabla a Excel") |
|
download_file_output = gr.File(label="Descargar archivo Excel", interactive=False) |
|
|
|
export_btn.click( |
|
fn=export_excel_interface, |
|
inputs=state_df, |
|
outputs=download_file_output |
|
) |
|
|
|
gr.Examples( |
|
examples=[ |
|
[None, "best", "upper right", ["logistic"], "independent", "Exp A\nExp B", "", "", "whitegrid", "#0072B2", "#D55E00", "-", "o", True, True, False, 50000, "Tiempo (días)", "Células (millones/mL)", "Glucosa (mM)", "Anticuerpo (mg/L)"] |
|
], |
|
inputs=[ |
|
file_input, legend_position, params_position, model_types_selected, mode, experiment_names_str, |
|
lower_bounds_str, upper_bounds_str, style_dropdown, |
|
line_color_picker, point_color_picker, line_style_dropdown, marker_style_dropdown, |
|
show_legend, show_params, use_differential, maxfev_input, |
|
x_axis_label_input, biomass_axis_label_input, substrate_axis_label_input, product_axis_label_input |
|
], |
|
label="Ejemplo de Configuración (subir archivo manualmente)" |
|
) |
|
|
|
|
|
return demo |
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
|
|
|
|
try: |
|
import google.colab |
|
IN_COLAB = True |
|
except: |
|
IN_COLAB = False |
|
|
|
demo_instance = create_interface() |
|
|
|
demo_instance.launch(share=True) |