File size: 51,950 Bytes
2a68b16 21df8ee 44f50e3 2a68b16 9faf081 2a68b16 ccd76a9 1105522 2a68b16 44f50e3 2a68b16 d248e5f 2a68b16 9faf081 2a68b16 44f50e3 2a68b16 44f50e3 2a68b16 44f50e3 2a68b16 ffa837b 2a68b16 44f50e3 2a68b16 1f60596 2a68b16 44f50e3 2a68b16 44f50e3 2a68b16 44f50e3 2a68b16 26f229e 2a68b16 44f50e3 2a68b16 d248e5f 2a68b16 44f50e3 2a68b16 d248e5f 2a68b16 44f50e3 2a68b16 26f229e 44f50e3 2a68b16 44f50e3 2a68b16 44f50e3 2a68b16 26f229e 2a68b16 44f50e3 2a68b16 1105522 ccd76a9 2a68b16 9faf081 2a68b16 44f50e3 2a68b16 44f50e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 |
# --- INSTALACIÓN DE DEPENDENCIAS ADICIONALES ---
import os
import sys
import subprocess
def install_packages():
packages = ["gradio", "plotly", "seaborn", "pandas", "openpyxl", "scikit-learn",
"fpdf2", "python-docx", "kaleido"]
for package in packages:
try:
__import__(package)
except ImportError:
print(f"Instalando {package}...")
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
install_packages()
# --- IMPORTACIONES ---
import os
import io
import tempfile
import traceback
import zipfile
from typing import List, Tuple, Dict, Any, Optional
from abc import ABC, abstractmethod
from unittest.mock import MagicMock
from PIL import Image
import gradio as gr
import plotly.graph_objects as go
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.integrate import odeint
from scipy.optimize import curve_fit
from sklearn.metrics import mean_squared_error
from docx import Document
from docx.shared import Inches
from fpdf import FPDF
from fpdf.enums import XPos, YPos
# --- CONSTANTES ---
C_TIME = 'tiempo'
C_BIOMASS = 'biomass'
C_SUBSTRATE = 'substrate'
C_PRODUCT = 'product'
COMPONENTS = [C_BIOMASS, C_SUBSTRATE, C_PRODUCT]
# --- BLOQUE 1: ESTRUCTURA DE MODELOS CINÉTICOS ESCALABLE ---
class KineticModel(ABC):
def __init__(self, name: str, display_name: str, param_names: List[str]):
self.name, self.display_name, self.param_names = name, display_name, param_names
self.num_params = len(param_names)
@abstractmethod
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray: pass
def diff_function(self, X: float, t: float, params: List[float]) -> float: return 0.0
@abstractmethod
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]: pass
@abstractmethod
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]: pass
class LogisticModel(KineticModel):
def __init__(self): super().__init__("logistic", "Logístico", ["Xo", "Xm", "um"])
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
xo, xm, um = params
if xm <= 0 or xo <= 0 or xm < xo: return np.full_like(t, np.nan)
exp_arg = np.clip(um * t, -700, 700); term_exp = np.exp(exp_arg)
denominator = 1 - (xo / xm) * (1 - term_exp); denominator = np.where(denominator == 0, 1e-9, denominator)
return (xo * term_exp) / denominator
def diff_function(self, X: float, t: float, params: List[float]) -> float:
_, xm, um = params; return um * X * (1 - X / xm) if xm > 0 else 0.0
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
return [biomass[0] if len(biomass) > 0 and biomass[0] > 1e-6 else 1e-3, max(biomass) if len(biomass) > 0 else 1.0, 0.1]
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
initial_biomass = biomass[0] if len(biomass) > 0 else 1e-9; max_biomass = max(biomass) if len(biomass) > 0 else 1.0
return ([1e-9, initial_biomass, 1e-9], [max_biomass * 1.2, max_biomass * 5, np.inf])
class GompertzModel(KineticModel):
def __init__(self): super().__init__("gompertz", "Gompertz", ["Xm", "um", "lag"])
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
xm, um, lag = params
if xm <= 0 or um <= 0: return np.full_like(t, np.nan)
exp_term = (um * np.e / xm) * (lag - t) + 1; exp_term_clipped = np.clip(exp_term, -700, 700)
return xm * np.exp(-np.exp(exp_term_clipped))
def diff_function(self, X: float, t: float, params: List[float]) -> float:
xm, um, lag = params; k_val = um * np.e / xm
u_val = k_val * (lag - t) + 1; u_val_clipped = np.clip(u_val, -np.inf, 700)
return X * k_val * np.exp(u_val_clipped) if xm > 0 and X > 0 else 0.0
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
return [max(biomass) if len(biomass) > 0 else 1.0, 0.1, time[np.argmax(np.gradient(biomass))] if len(biomass) > 1 else 0]
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
initial_biomass = min(biomass) if len(biomass) > 0 else 1e-9; max_biomass = max(biomass) if len(biomass) > 0 else 1.0
return ([max(1e-9, initial_biomass), 1e-9, 0], [max_biomass * 5, np.inf, max(time) if len(time) > 0 else 1])
class MoserModel(KineticModel):
def __init__(self): super().__init__("moser", "Moser", ["Xm", "um", "Ks"])
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
Xm, um, Ks = params; return Xm * (1 - np.exp(-um * (t - Ks))) if Xm > 0 and um > 0 else np.full_like(t, np.nan)
def diff_function(self, X: float, t: float, params: List[float]) -> float:
Xm, um, _ = params; return um * (Xm - X) if Xm > 0 else 0.0
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
return [max(biomass) if len(biomass) > 0 else 1.0, 0.1, 0]
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
initial_biomass = min(biomass) if len(biomass) > 0 else 1e-9; max_biomass = max(biomass) if len(biomass) > 0 else 1.0
return ([max(1e-9, initial_biomass), 1e-9, -np.inf], [max_biomass * 5, np.inf, np.inf])
class BaranyiModel(KineticModel):
def __init__(self): super().__init__("baranyi", "Baranyi", ["X0", "Xm", "um", "lag"])
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
X0, Xm, um, lag = params
if X0 <= 0 or Xm <= X0 or um <= 0 or lag < 0: return np.full_like(t, np.nan)
A_t = t + (1 / um) * np.log(np.exp(-um * t) + np.exp(-um * lag) - np.exp(-um * (t + lag)))
exp_um_At = np.exp(np.clip(um * A_t, -700, 700))
numerator = Xm; denominator = 1 + ((Xm / X0) - 1) * (1 / exp_um_At)
return numerator / np.where(denominator == 0, 1e-9, denominator)
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
return [biomass[0] if len(biomass) > 0 and biomass[0] > 1e-6 else 1e-3, max(biomass) if len(biomass) > 0 else 1.0, 0.1, time[np.argmax(np.gradient(biomass))] if len(biomass) > 1 else 0.0]
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
initial_biomass = biomass[0] if len(biomass) > 0 else 1e-9; max_biomass = max(biomass) if len(biomass) > 0 else 1.0
return ([1e-9, max(1e-9, initial_biomass), 1e-9, 0], [max_biomass * 1.2, max_biomass * 10, np.inf, max(time) if len(time) > 0 else 1])
# --- REGISTRO CENTRAL DE MODELOS ---
AVAILABLE_MODELS: Dict[str, KineticModel] = {model.name: model for model in [LogisticModel(), GompertzModel(), MoserModel(), BaranyiModel()]}
# --- CLASE DE AJUSTE DE BIOPROCESOS ---
class BioprocessFitter:
def __init__(self, kinetic_model: KineticModel, maxfev: int = 50000):
self.model, self.maxfev = kinetic_model, maxfev
self.params: Dict[str, Dict[str, float]] = {c: {} for c in COMPONENTS}
self.r2: Dict[str, float] = {}; self.rmse: Dict[str, float] = {}
self.data_time: Optional[np.ndarray] = None
self.data_means: Dict[str, Optional[np.ndarray]] = {c: None for c in COMPONENTS}
self.data_stds: Dict[str, Optional[np.ndarray]] = {c: None for c in COMPONENTS}
def _get_biomass_at_t(self, t: np.ndarray, p: List[float]) -> np.ndarray: return self.model.model_function(t, *p)
def _get_initial_biomass(self, p: List[float]) -> float:
if not p: return 0.0
if any(k in self.model.param_names for k in ["Xo", "X0"]):
try:
idx = self.model.param_names.index("Xo") if "Xo" in self.model.param_names else self.model.param_names.index("X0")
return p[idx]
except (ValueError, IndexError): pass
return float(self.model.model_function(np.array([0]), *p)[0])
def _calc_integral(self, t: np.ndarray, p: List[float]) -> np.ndarray:
X_t = self._get_biomass_at_t(t, p)
if np.any(np.isnan(X_t)): return np.full_like(t, np.nan)
integral_X = np.zeros_like(X_t)
if len(t) > 1:
dt = np.diff(t, prepend=t[0] - (t[1] - t[0] if len(t) > 1 else 1))
integral_X = np.cumsum(X_t * dt)
return integral_X, X_t
def substrate(self, t: np.ndarray, so: float, p_c: float, q: float, bio_p: List[float]) -> np.ndarray:
integral, X_t = self._calc_integral(t, bio_p); X0 = self._get_initial_biomass(bio_p)
return so - p_c * (X_t - X0) - q * integral
def product(self, t: np.ndarray, po: float, alpha: float, beta: float, bio_p: List[float]) -> np.ndarray:
integral, X_t = self._calc_integral(t, bio_p); X0 = self._get_initial_biomass(bio_p)
return po + alpha * (X_t - X0) + beta * integral
def process_data_from_df(self, df: pd.DataFrame) -> None:
try:
time_col = [c for c in df.columns if c[1].strip().lower() == C_TIME][0]
self.data_time = df[time_col].dropna().to_numpy(); min_len = len(self.data_time)
def extract(name: str) -> Tuple[np.ndarray, np.ndarray]:
cols = [c for c in df.columns if c[1].strip().lower() == name.lower()]
if not cols: return np.array([]), np.array([])
reps = [df[c].dropna().values[:min_len] for c in cols]; reps = [r for r in reps if len(r) == min_len]
if not reps: return np.array([]), np.array([])
arr = np.array(reps); mean = np.mean(arr, axis=0)
std = np.std(arr, axis=0, ddof=1) if arr.shape[0] > 1 else np.zeros_like(mean)
return mean, std
self.data_means[C_BIOMASS], self.data_stds[C_BIOMASS] = extract('Biomasa')
self.data_means[C_SUBSTRATE], self.data_stds[C_SUBSTRATE] = extract('Sustrato')
self.data_means[C_PRODUCT], self.data_stds[C_PRODUCT] = extract('Producto')
except (IndexError, KeyError) as e: raise ValueError(f"Estructura de DataFrame inválida. Error: {e}")
def _fit_component(self, func, t, data, p0, bounds, sigma=None, *args):
try:
if sigma is not None: sigma = np.where(sigma == 0, 1e-9, sigma)
popt, _ = curve_fit(func, t, data, p0, bounds=bounds, maxfev=self.maxfev, ftol=1e-9, xtol=1e-9, sigma=sigma, absolute_sigma=bool(sigma is not None))
pred = func(t, *popt, *args)
if np.any(np.isnan(pred)): return None, np.nan, np.nan
r2 = 1 - np.sum((data - pred)**2) / np.sum((data - np.mean(data))**2)
rmse = np.sqrt(mean_squared_error(data, pred))
return list(popt), r2, rmse
except (RuntimeError, ValueError): return None, np.nan, np.nan
def fit_all_models(self) -> None:
t, bio_m, bio_s = self.data_time, self.data_means[C_BIOMASS], self.data_stds[C_BIOMASS]
if t is None or bio_m is None or len(bio_m) == 0: return
popt_bio = self._fit_biomass_model(t, bio_m, bio_s)
if popt_bio:
bio_p = list(self.params[C_BIOMASS].values())
if self.data_means[C_SUBSTRATE] is not None and len(self.data_means[C_SUBSTRATE]) > 0: self._fit_substrate_model(t, self.data_means[C_SUBSTRATE], self.data_stds[C_SUBSTRATE], bio_p)
if self.data_means[C_PRODUCT] is not None and len(self.data_means[C_PRODUCT]) > 0: self._fit_product_model(t, self.data_means[C_PRODUCT], self.data_stds[C_PRODUCT], bio_p)
def _fit_biomass_model(self, t, data, std):
p0, bounds = self.model.get_initial_params(t, data), self.model.get_param_bounds(t, data)
popt, r2, rmse = self._fit_component(self.model.model_function, t, data, p0, bounds, std)
if popt: self.params[C_BIOMASS], self.r2[C_BIOMASS], self.rmse[C_BIOMASS] = dict(zip(self.model.param_names, popt)), r2, rmse
return popt
def _fit_substrate_model(self, t, data, std, bio_p):
p0, b = [data[0], 0.1, 0.01], ([0, -np.inf, -np.inf], [np.inf, np.inf, np.inf])
popt, r2, rmse = self._fit_component(lambda t, so, p, q: self.substrate(t, so, p, q, bio_p), t, data, p0, b, std)
if popt: self.params[C_SUBSTRATE], self.r2[C_SUBSTRATE], self.rmse[C_SUBSTRATE] = {'So': popt[0], 'p': popt[1], 'q': popt[2]}, r2, rmse
def _fit_product_model(self, t, data, std, bio_p):
p0, b = [data[0] if len(data)>0 else 0, 0.1, 0.01], ([0, -np.inf, -np.inf], [np.inf, np.inf, np.inf])
popt, r2, rmse = self._fit_component(lambda t, po, a, b: self.product(t, po, a, b, bio_p), t, data, p0, b, std)
if popt: self.params[C_PRODUCT], self.r2[C_PRODUCT], self.rmse[C_PRODUCT] = {'Po': popt[0], 'alpha': popt[1], 'beta': popt[2]}, r2, rmse
def system_ode(self, y, t, bio_p, sub_p, prod_p):
X, _, _ = y; dXdt = self.model.diff_function(X, t, bio_p)
return [dXdt, -sub_p.get('p',0)*dXdt - sub_p.get('q',0)*X, prod_p.get('alpha',0)*dXdt + prod_p.get('beta',0)*X]
def solve_odes(self, t_fine):
p = self.params; bio_d, sub_d, prod_d = p[C_BIOMASS], p[C_SUBSTRATE], p[C_PRODUCT]
if not bio_d: return None, None, None
try:
bio_p = list(bio_d.values()); y0 = [self._get_initial_biomass(bio_p), sub_d.get('So',0), prod_d.get('Po',0)]
sol = odeint(self.system_ode, y0, t_fine, args=(bio_p, sub_d, prod_d))
return sol[:, 0], sol[:, 1], sol[:, 2]
except: return None, None, None
def _generate_fine_time_grid(self, t_exp): return np.linspace(min(t_exp), max(t_exp), 500) if t_exp is not None and len(t_exp) > 1 else np.array([])
def get_model_curves_for_plot(self, t_fine, use_diff):
if use_diff and self.model.diff_function(1, 1, [1]*self.model.num_params) != 0: return self.solve_odes(t_fine)
X, S, P = None, None, None
if self.params[C_BIOMASS]:
bio_p = list(self.params[C_BIOMASS].values()); X = self.model.model_function(t_fine, *bio_p)
if self.params[C_SUBSTRATE]: S = self.substrate(t_fine, *list(self.params[C_SUBSTRATE].values()), bio_p)
if self.params[C_PRODUCT]: P = self.product(t_fine, *list(self.params[C_PRODUCT].values()), bio_p)
return X, S, P
def plot_individual_or_combined(self, cfg, mode):
t_exp, t_fine = cfg['time_exp'], self._generate_fine_time_grid(cfg['time_exp'])
X_m, S_m, P_m = self.get_model_curves_for_plot(t_fine, cfg.get('use_differential', False))
sns.set_style(cfg.get('style', 'whitegrid'))
if mode == 'average':
fig, (ax1,ax2,ax3) = plt.subplots(3,1,figsize=(10,15),sharex=True)
fig.suptitle(f"Análisis: {cfg.get('exp_name','')} ({self.model.display_name})", fontsize=16); axes=[ax1,ax2,ax3]
else:
fig, ax1 = plt.subplots(figsize=(12,8)); fig.suptitle(f"Análisis: {cfg.get('exp_name','')} ({self.model.display_name})", fontsize=16)
ax2,ax3 = ax1.twinx(),ax1.twinx(); ax3.spines["right"].set_position(("axes",1.18)); axes=[ax1,ax2,ax3]
data_map = {C_BIOMASS:X_m, C_SUBSTRATE:S_m, C_PRODUCT:P_m}
comb_styles = {C_BIOMASS:{'c':'#0072B2','mc':'#56B4E9','m':'o','ls':'-'}, C_SUBSTRATE:{'c':'#009E73','mc':'#34E499','m':'s','ls':'--'}, C_PRODUCT:{'c':'#D55E00','mc':'#F0E442','m':'^','ls':'-.'}}
for ax, comp in zip(axes, COMPONENTS):
ylabel, data, std, model_data = cfg.get('axis_labels',{}).get(f'{comp}_label',comp.capitalize()), cfg.get(f'{comp}_exp'), cfg.get(f'{comp}_std'), data_map.get(comp)
if mode == 'combined':
s = comb_styles[comp]; pc, lc, ms, ls = s['c'], s['mc'], s['m'], s['ls']
else:
pc,lc,ms,ls = cfg.get(f'{comp}_point_color'), cfg.get(f'{comp}_line_color'), cfg.get(f'{comp}_marker_style'), cfg.get(f'{comp}_line_style')
ax_c = pc if mode == 'combined' else 'black'; ax.set_ylabel(ylabel,color=ax_c); ax.tick_params(axis='y',labelcolor=ax_c)
if data is not None and len(data)>0:
if cfg.get('show_error_bars') and std is not None and np.any(std>0): ax.errorbar(t_exp, data, yerr=std, fmt=ms, color=pc, label=f'{comp.capitalize()} (Datos)', capsize=cfg.get('error_cap_size',3), elinewidth=cfg.get('error_line_width',1))
else: ax.plot(t_exp, data, ls='', marker=ms, color=pc, label=f'{comp.capitalize()} (Datos)')
if model_data is not None and len(model_data)>0: ax.plot(t_fine, model_data, ls=ls, color=lc, label=f'{comp.capitalize()} (Modelo)')
if mode=='average' and cfg.get('show_legend',True): ax.legend(loc=cfg.get('legend_pos','best'))
if mode=='average' and cfg.get('show_params',True) and self.params[comp]:
decs = cfg.get('decimal_places',3); p_txt='\n'.join([f"{k}={format_number(v,decs)}" for k,v in self.params[comp].items()])
full_txt=f"{p_txt}\nR²={format_number(self.r2.get(comp,0),3)}, RMSE={format_number(self.rmse.get(comp,0),3)}"
pos_x,ha = (0.95,'right') if 'right' in cfg.get('params_pos','upper right') else (0.05,'left')
ax.text(pos_x,0.95,full_txt,transform=ax.transAxes,va='top',ha=ha,bbox=dict(boxstyle='round,pad=0.4',fc='wheat',alpha=0.7))
if mode=='combined' and cfg.get('show_legend',True):
h1,l1=axes[0].get_legend_handles_labels(); h2,l2=axes[1].get_legend_handles_labels(); h3,l3=axes[2].get_legend_handles_labels()
axes[0].legend(handles=h1+h2+h3, labels=l1+l2+l3, loc=cfg.get('legend_pos','best'))
axes[-1].set_xlabel(cfg.get('axis_labels',{}).get('x_label','Tiempo')); plt.tight_layout()
if mode=='combined': fig.subplots_adjust(right=0.8)
return fig
# --- FUNCIONES AUXILIARES, DE PLOTEO Y REPORTE (COMPLETAS) ---
def format_number(value: Any, decimals: int) -> str:
"""
Formatea un número para su visualización. Si decimals es 0, usa un formato inteligente.
"""
if not isinstance(value, (int, float, np.number)) or pd.isna(value):
return "" if pd.isna(value) else str(value)
decimals = int(decimals)
if decimals == 0:
if 0 < abs(value) < 1:
return f"{value:.2e}"
else:
return str(int(round(value, 0)))
return str(round(value, decimals))
def plot_model_comparison_matplotlib(plot_config: Dict, models_results: List[Dict]) -> plt.Figure:
"""
Crea un gráfico de comparación de modelos estático usando Matplotlib/Seaborn.
"""
time_exp = plot_config['time_exp']
# Usar un modelo cualquiera solo para generar la rejilla de tiempo
time_fine = BioprocessFitter(list(AVAILABLE_MODELS.values())[0])._generate_fine_time_grid(time_exp)
num_models = len(models_results)
palettes = {
C_BIOMASS: sns.color_palette("Blues", num_models),
C_SUBSTRATE: sns.color_palette("Greens", num_models),
C_PRODUCT: sns.color_palette("Reds", num_models)
}
line_styles = ['-', '--', '-.', ':']
sns.set_style(plot_config.get('style', 'whitegrid'))
fig, ax1 = plt.subplots(figsize=(12, 8))
# Configuración de los 3 ejes Y
ax1.set_xlabel(plot_config['axis_labels']['x_label'])
ax1.set_ylabel(plot_config['axis_labels']['biomass_label'], color="navy", fontsize=12)
ax1.tick_params(axis='y', labelcolor="navy")
ax2 = ax1.twinx()
ax3 = ax1.twinx()
ax3.spines["right"].set_position(("axes", 1.22))
ax2.set_ylabel(plot_config['axis_labels']['substrate_label'], color="darkgreen", fontsize=12)
ax2.tick_params(axis='y', labelcolor="darkgreen")
ax3.set_ylabel(plot_config['axis_labels']['product_label'], color="darkred", fontsize=12)
ax3.tick_params(axis='y', labelcolor="darkred")
# Dibujar datos experimentales
data_markers = {C_BIOMASS: 'o', C_SUBSTRATE: 's', C_PRODUCT: '^'}
for ax, key, color, face in [(ax1, C_BIOMASS, 'navy', 'skyblue'), (ax2, C_SUBSTRATE, 'darkgreen', 'lightgreen'), (ax3, C_PRODUCT, 'darkred', 'lightcoral')]:
data_exp = plot_config.get(f'{key}_exp')
data_std = plot_config.get(f'{key}_std')
if data_exp is not None:
if plot_config.get('show_error_bars') and data_std is not None and np.any(data_std > 0):
ax.errorbar(time_exp, data_exp, yerr=data_std, fmt=data_markers[key], color=color, label=f'{key.capitalize()} (Datos)', zorder=10, markersize=8, markerfacecolor=face, markeredgecolor=color, capsize=plot_config.get('error_cap_size', 3), elinewidth=plot_config.get('error_line_width', 1))
else:
ax.plot(time_exp, data_exp, ls='', marker=data_markers[key], label=f'{key.capitalize()} (Datos)', zorder=10, ms=8, mfc=face, mec=color, mew=1.5)
# Dibujar curvas de los modelos
for i, res in enumerate(models_results):
ls = line_styles[i % len(line_styles)]
model_info = AVAILABLE_MODELS.get(res["name"], MagicMock(display_name=res["name"]))
model_display_name = model_info.display_name
for key_short, ax, name_long in [('X', ax1, C_BIOMASS), ('S', ax2, C_SUBSTRATE), ('P', ax3, C_PRODUCT)]:
if res.get(key_short) is not None:
ax.plot(time_fine, res[key_short], color=palettes[name_long][i], ls=ls, label=f'{name_long.capitalize()} ({model_display_name})', alpha=0.9)
fig.subplots_adjust(left=0.3, right=0.78, top=0.92, bottom=0.35 if plot_config.get('show_params') else 0.1)
if plot_config.get('show_legend'):
h1, l1 = ax1.get_legend_handles_labels(); h2, l2 = ax2.get_legend_handles_labels(); h3, l3 = ax3.get_legend_handles_labels()
fig.legend(h1 + h2 + h3, l1 + l2 + l3, loc='center left', bbox_to_anchor=(0.0, 0.5), fancybox=True, shadow=True, fontsize='small')
if plot_config.get('show_params'):
total_width = 0.95; box_width = total_width / num_models; start_pos = (1.0 - total_width) / 2
for i, res in enumerate(models_results):
model_info = AVAILABLE_MODELS.get(res["name"], MagicMock(display_name=res["name"]))
text = f"**{model_info.display_name}**\n" + _generate_model_param_text(res, plot_config.get('decimal_places', 3))
fig.text(start_pos + i * box_width, 0.01, text, transform=fig.transFigure, fontsize=7.5, va='bottom', ha='left', bbox=dict(boxstyle='round,pad=0.4', fc='ivory', ec='gray', alpha=0.9))
fig.suptitle(f"Comparación de Modelos: {plot_config.get('exp_name', '')}", fontsize=16)
return fig
def plot_model_comparison_plotly(plot_config: Dict, models_results: List[Dict]) -> go.Figure:
"""
Crea un gráfico de comparación de modelos interactivo usando Plotly.
"""
fig = go.Figure()
time_exp = plot_config['time_exp']
time_fine = BioprocessFitter(list(AVAILABLE_MODELS.values())[0])._generate_fine_time_grid(time_exp)
num_models = len(models_results)
palettes = {
C_BIOMASS: sns.color_palette("Blues", n_colors=num_models).as_hex(),
C_SUBSTRATE: sns.color_palette("Greens", n_colors=num_models).as_hex(),
C_PRODUCT: sns.color_palette("Reds", n_colors=num_models).as_hex()
}
line_styles, data_markers = ['solid', 'dash', 'dot', 'dashdot'], {C_BIOMASS: 'circle-open', C_SUBSTRATE: 'square-open', C_PRODUCT: 'diamond-open'}
for key, y_axis, color in [(C_BIOMASS, 'y1', 'navy'), (C_SUBSTRATE, 'y2', 'darkgreen'), (C_PRODUCT, 'y3', 'darkred')]:
data_exp, data_std = plot_config.get(f'{key}_exp'), plot_config.get(f'{key}_std')
if data_exp is not None:
error_y_config = dict(type='data', array=data_std, visible=True) if plot_config.get('show_error_bars') and data_std is not None and np.any(data_std > 0) else None
fig.add_trace(go.Scatter(x=time_exp, y=data_exp, mode='markers', name=f'{key.capitalize()} (Datos)', marker=dict(color=color, size=10, symbol=data_markers[key], line=dict(width=2)), error_y=error_y_config, yaxis=y_axis, legendgroup="data"))
for i, res in enumerate(models_results):
ls = line_styles[i % len(line_styles)]
model_display_name = AVAILABLE_MODELS.get(res["name"], MagicMock(display_name=res["name"])).display_name
if res.get('X') is not None: fig.add_trace(go.Scatter(x=time_fine, y=res['X'], mode='lines', name=f'Biomasa ({model_display_name})', line=dict(color=palettes[C_BIOMASS][i], dash=ls), legendgroup=res["name"]))
if res.get('S') is not None: fig.add_trace(go.Scatter(x=time_fine, y=res['S'], mode='lines', name=f'Sustrato ({model_display_name})', line=dict(color=palettes[C_SUBSTRATE][i], dash=ls), yaxis='y2', legendgroup=res["name"]))
if res.get('P') is not None: fig.add_trace(go.Scatter(x=time_fine, y=res['P'], mode='lines', name=f'Producto ({model_display_name})', line=dict(color=palettes[C_PRODUCT][i], dash=ls), yaxis='y3', legendgroup=res["name"]))
if plot_config.get('show_params'):
x_positions = np.linspace(0, 1, num_models * 2 + 1)[1::2]
for i, res in enumerate(models_results):
model_display_name = AVAILABLE_MODELS.get(res["name"], MagicMock(display_name=res["name"])).display_name
text = f"<b>{model_display_name}</b><br>" + _generate_model_param_text(res, plot_config.get('decimal_places', 3)).replace('\n', '<br>')
fig.add_annotation(text=text, align='left', showarrow=False, xref='paper', yref='paper', x=x_positions[i], y=-0.35, bordercolor='gray', borderwidth=1, bgcolor='ivory', opacity=0.9)
fig.update_layout(
title=f"Comparación de Modelos (Interactivo): {plot_config.get('exp_name', '')}",
xaxis=dict(domain=[0.18, 0.82]),
yaxis=dict(title=plot_config['axis_labels']['biomass_label'], titlefont=dict(color='navy'), tickfont=dict(color='navy')),
yaxis2=dict(title=plot_config['axis_labels']['substrate_label'], titlefont=dict(color='darkgreen'), tickfont=dict(color='darkgreen'), overlaying='y', side='right'),
yaxis3=dict(title=plot_config['axis_labels']['product_label'], titlefont=dict(color='darkred'), tickfont=dict(color='darkred'), overlaying='y', side='right', position=0.85),
legend=dict(traceorder="grouped", yanchor="middle", y=0.5, xanchor="right", x=-0.15),
margin=dict(l=200, r=150, b=250 if plot_config.get('show_params') else 80, t=80),
template="seaborn",
showlegend=plot_config.get('show_legend', True)
)
return fig
def _generate_model_param_text(result: Dict, decimals: int) -> str:
"""Genera el texto formateado de los parámetros para las cajas de anotación."""
text = ""
for comp in COMPONENTS:
if params := result.get('params', {}).get(comp):
p_str = ', '.join([f"{k}={format_number(v, decimals)}" for k, v in params.items()])
r2 = result.get('r2', {}).get(comp, 0)
rmse = result.get('rmse', {}).get(comp, 0)
text += f"<i>{comp[:4].capitalize()}:</i> {p_str}\n(R²={format_number(r2, 3)}, RMSE={format_number(rmse, 3)})\n"
return text.strip()
def create_zip_file(image_list: List[Any]) -> Optional[str]:
if not image_list:
gr.Warning("No hay gráficos para descargar.")
return None
try:
zip_buffer = io.BytesIO()
with zipfile.ZipFile(zip_buffer, "w", zipfile.ZIP_DEFLATED) as zf:
for i, fig in enumerate(image_list):
buf = io.BytesIO()
if isinstance(fig, go.Figure): buf.write(fig.to_image(format="png", scale=2, engine="kaleido"))
elif isinstance(fig, plt.Figure): fig.savefig(buf, format='png', dpi=200, bbox_inches='tight'); plt.close(fig)
elif isinstance(fig, Image.Image): fig.save(buf, 'PNG')
else: continue
buf.seek(0)
zf.writestr(f"grafico_{i+1}.png", buf.read())
with tempfile.NamedTemporaryFile(delete=False, suffix=".zip") as tmp:
tmp.write(zip_buffer.getvalue())
return tmp.name
except Exception as e:
traceback.print_exc()
gr.Error(f"Error al crear el archivo ZIP: {e}")
return None
def create_word_report(image_list: List[Any], table_df: pd.DataFrame, decimals: int) -> Optional[str]:
if not image_list and (table_df is None or table_df.empty):
gr.Warning("No hay datos ni gráficos para crear el reporte.")
return None
try:
doc = Document()
doc.add_heading('Reporte de Análisis de Cinéticas', 0)
if table_df is not None and not table_df.empty:
doc.add_heading('Tabla de Resultados', level=1)
table = doc.add_table(rows=1, cols=len(table_df.columns), style='Table Grid')
for i, col in enumerate(table_df.columns): table.cell(0, i).text = str(col)
for _, row in table_df.iterrows():
cells = table.add_row().cells
for i, val in enumerate(row): cells[i].text = str(format_number(val, decimals))
if image_list:
doc.add_page_break()
doc.add_heading('Gráficos Generados', level=1)
for i, fig in enumerate(image_list):
buf = io.BytesIO()
if isinstance(fig, go.Figure): buf.write(fig.to_image(format="png", scale=2, engine="kaleido"))
elif isinstance(fig, plt.Figure): fig.savefig(buf, format='png', dpi=200, bbox_inches='tight'); plt.close(fig)
elif isinstance(fig, Image.Image): fig.save(buf, 'PNG')
else: continue
buf.seek(0)
doc.add_paragraph(f'Gráfico {i+1}', style='Heading 3')
doc.add_picture(buf, width=Inches(6.0))
with tempfile.NamedTemporaryFile(delete=False, suffix=".docx") as tmp:
doc.save(tmp.name)
return tmp.name
except Exception as e:
traceback.print_exc()
gr.Error(f"Error al crear el reporte de Word: {e}")
return None
def create_pdf_report(image_list: List[Any], table_df: pd.DataFrame, decimals: int) -> Optional[str]:
if not image_list and (table_df is None or table_df.empty):
gr.Warning("No hay datos ni gráficos para crear el reporte.")
return None
try:
pdf = FPDF()
pdf.set_auto_page_break(auto=True, margin=15)
pdf.add_page()
pdf.set_font("Helvetica", 'B', 16)
pdf.cell(0, 10, 'Reporte de Análisis de Cinéticas', new_x=XPos.LMARGIN, new_y=YPos.NEXT, align='C')
if table_df is not None and not table_df.empty:
pdf.ln(10)
pdf.set_font("Helvetica", 'B', 12)
pdf.cell(0, 10, 'Tabla de Resultados', new_x=XPos.LMARGIN, new_y=YPos.NEXT, align='L')
pdf.set_font("Helvetica", 'B', 8)
effective_page_width = pdf.w - 2 * pdf.l_margin
num_cols = len(table_df.columns)
col_width = effective_page_width / num_cols if num_cols > 0 else 0
if num_cols > 15: pdf.set_font_size(6)
elif num_cols > 10: pdf.set_font_size(7)
for col in table_df.columns: pdf.cell(col_width, 10, str(col), border=1, align='C')
pdf.ln()
pdf.set_font("Helvetica", '', 7)
if num_cols > 15: pdf.set_font_size(5)
elif num_cols > 10: pdf.set_font_size(6)
for _, row in table_df.iterrows():
for val in row: pdf.cell(col_width, 10, str(format_number(val, decimals)), border=1, align='R')
pdf.ln()
if image_list:
for i, fig in enumerate(image_list):
pdf.add_page()
pdf.set_font("Helvetica", 'B', 12)
pdf.cell(0, 10, f'Gráfico {i+1}', new_x=XPos.LMARGIN, new_y=YPos.NEXT, align='L')
pdf.ln(5)
buf = io.BytesIO()
if isinstance(fig, go.Figure): buf.write(fig.to_image(format="png", scale=2, engine="kaleido"))
elif isinstance(fig, plt.Figure): fig.savefig(buf, format='png', dpi=200, bbox_inches='tight'); plt.close(fig)
elif isinstance(fig, Image.Image): fig.save(buf, 'PNG')
else: continue
buf.seek(0)
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_img:
tmp_img.write(buf.read())
pdf.image(tmp_img.name, x=None, y=None, w=pdf.w - 20)
os.remove(tmp_img.name)
pdf_bytes = pdf.output()
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
tmp.write(pdf_bytes)
return tmp.name
except Exception as e:
traceback.print_exc()
gr.Error(f"Error al crear el reporte PDF: {e}")
return None
# --- FUNCIÓN PRINCIPAL DE ANÁLISIS ---
def run_analysis(file, model_names, mode, engine, exp_names, settings):
if not file: return [], pd.DataFrame(), "Error: Sube un archivo Excel.", pd.DataFrame()
if not model_names: return [], pd.DataFrame(), "Error: Selecciona un modelo.", pd.DataFrame()
try: xls = pd.ExcelFile(file.name)
except Exception as e: return [], pd.DataFrame(), f"Error al leer archivo: {e}", pd.DataFrame()
figs, results_data, msgs = [], [], []
exp_list = [n.strip() for n in exp_names.split('\n') if n.strip()]
for i, sheet in enumerate(xls.sheet_names):
exp_name = exp_list[i] if i < len(exp_list) else f"Hoja '{sheet}'"
try:
df = pd.read_excel(xls, sheet_name=sheet, header=[0,1])
reader = BioprocessFitter(list(AVAILABLE_MODELS.values())[0])
reader.process_data_from_df(df)
if reader.data_time is None: msgs.append(f"WARN: Sin datos de tiempo en '{sheet}'."); continue
cfg = settings.copy(); cfg.update({'exp_name':exp_name, 'time_exp':reader.data_time})
for c in COMPONENTS: cfg[f'{c}_exp'], cfg[f'{c}_std'] = reader.data_means[c], reader.data_stds[c]
t_fine, plot_results = reader._generate_fine_time_grid(reader.data_time), []
for m_name in model_names:
if m_name not in AVAILABLE_MODELS: msgs.append(f"WARN: Modelo '{m_name}' no disponible."); continue
fitter = BioprocessFitter(AVAILABLE_MODELS[m_name], maxfev=int(settings.get('maxfev',50000)))
fitter.data_time, fitter.data_means, fitter.data_stds = reader.data_time, reader.data_means, reader.data_stds
fitter.fit_all_models()
row = {'Experimento':exp_name, 'Modelo':fitter.model.display_name}
for c in COMPONENTS:
if fitter.params[c]: row.update({f'{c.capitalize()}_{k}':v for k,v in fitter.params[c].items()})
row[f'R2_{c.capitalize()}'], row[f'RMSE_{c.capitalize()}'] = fitter.r2.get(c), fitter.rmse.get(c)
results_data.append(row)
if mode in ["average","combined"]:
if hasattr(fitter,'plot_individual_or_combined'): figs.append(fitter.plot_individual_or_combined(cfg,mode))
else:
X,S,P = fitter.get_model_curves_for_plot(t_fine, settings.get('use_differential',False))
plot_results.append({'name':m_name, 'X':X, 'S':S, 'P':P, 'params':fitter.params, 'r2':fitter.r2, 'rmse':fitter.rmse})
if mode=="model_comparison" and plot_results:
plot_func = plot_model_comparison_plotly if engine=='Plotly (Interactivo)' else plot_model_comparison_matplotlib
if 'plot_model_comparison_plotly' in globals(): figs.append(plot_func(cfg, plot_results))
except Exception as e: msgs.append(f"ERROR en '{sheet}': {e}"); traceback.print_exc()
msg = "Análisis completado."+("\n"+"\n".join(msgs) if msgs else "")
df_res = pd.DataFrame(results_data).dropna(axis=1,how='all')
if not df_res.empty:
id_c, p_c, m_c = ['Experimento','Modelo'], sorted([c for c in df_res.columns if '_' in c and 'R2' not in c and 'RMSE' not in c]), sorted([c for c in df_res.columns if 'R2' in c or 'RMSE' in c])
df_res = df_res[[c for c in id_c+p_c+m_c if c in df_res.columns]]
df_ui = df_res.copy()
for c in df_ui.select_dtypes(include=np.number).columns: df_ui[c] = df_ui[c].apply(lambda x:format_number(x,settings.get('decimal_places',3)) if pd.notna(x) else '')
else: df_ui = pd.DataFrame()
return figs, df_ui, msg, df_res
# --- INTERFAZ DE USUARIO DE GRADIO (COMPLETA) ---
def create_gradio_interface() -> gr.Blocks:
"""
Crea y configura la interfaz de usuario completa con Gradio.
"""
# Obtener las opciones de modelo dinámicamente del registro
MODEL_CHOICES = [(model.display_name, model.name) for model in AVAILABLE_MODELS.values()]
# Seleccionar por defecto los primeros 3 modelos o todos si hay menos de 3
DEFAULT_MODELS = [m.name for m in list(AVAILABLE_MODELS.values())[:3]]
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky")) as demo:
gr.Markdown("# 🔬 Analizador de Cinéticas de Bioprocesos")
gr.Markdown("Sube tus datos, selecciona modelos, personaliza los gráficos y exporta los resultados.")
with gr.Tabs():
# --- PESTAÑA 1: GUÍA Y FORMATO ---
with gr.TabItem("1. Guía y Formato de Datos"):
with gr.Row():
with gr.Column(scale=2):
gr.Markdown(
"""
### Bienvenido al Analizador de Cinéticas
Esta herramienta te permite ajustar modelos matemáticos a tus datos de crecimiento microbiano.
**Pasos a seguir:**
1. Prepara tu archivo Excel según el formato especificado a la derecha.
2. Ve a la pestaña **"2. Configuración y Ejecución"**.
3. Sube tu archivo y selecciona los modelos cinéticos que deseas probar.
4. Ajusta las opciones de visualización y análisis según tus preferencias.
5. Haz clic en **"Analizar y Graficar"**.
6. Explora los resultados en la pestaña **"3. Resultados"**.
### Fórmulas de los Modelos
- **Logístico:** $ X(t) = \\frac{X_0 X_m e^{\\mu_m t}}{X_m - X_0 + X_0 e^{\\mu_m t}} $
- **Gompertz:** $ X(t) = X_m \\exp\\left(-\\exp\\left(\\frac{\\mu_m e}{X_m}(\\lambda-t)+1\\right)\\right) $
- **Moser:** $X(t) = X_m (1 - e^{-\\mu_m (t - K_s)})$
"""
)
with gr.Column(scale=3):
gr.Markdown("### Formato del Archivo Excel")
gr.Markdown("Usa una **cabecera de dos niveles** para tus datos. La primera fila es el nombre de la réplica (ej. 'Rep1', 'Rep2') y la segunda el tipo de dato ('Tiempo', 'Biomasa', 'Sustrato', 'Producto').")
df_ejemplo = pd.DataFrame({
('Rep1', 'Tiempo'): [0, 2, 4, 6], ('Rep1', 'Biomasa'): [0.1, 0.5, 2.5, 5.0], ('Rep1', 'Sustrato'): [10.0, 9.5, 7.0, 2.0],
('Rep2', 'Tiempo'): [0, 2, 4, 6], ('Rep2', 'Biomasa'): [0.12, 0.48, 2.6, 5.2], ('Rep2', 'Sustrato'): [10.2, 9.6, 7.1, 2.1],
})
gr.DataFrame(df_ejemplo, interactive=False, label="Ejemplo de Formato")
# --- PESTAÑA 2: CONFIGURACIÓN Y EJECUCIÓN ---
with gr.TabItem("2. Configuración y Ejecución"):
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(label="Sube tu archivo Excel (.xlsx)", file_types=['.xlsx'])
exp_names_input = gr.Textbox(label="Nombres de Experimentos (opcional)", placeholder="Nombre Hoja 1\nNombre Hoja 2\n...", lines=3, info="Un nombre por línea, en el mismo orden que las hojas del Excel.")
model_selection_input = gr.CheckboxGroup(choices=MODEL_CHOICES, label="Modelos a Probar", value=DEFAULT_MODELS)
analysis_mode_input = gr.Radio(["average", "combined", "model_comparison"], label="Modo de Análisis", value="average", info="Average: Gráficos separados.\nCombined: Un gráfico con 3 ejes.\nComparación: Gráfico global comparativo.")
plotting_engine_input = gr.Radio(["Seaborn (Estático)", "Plotly (Interactivo)"], label="Motor Gráfico (en modo Comparación)", value="Plotly (Interactivo)")
with gr.Column(scale=2):
with gr.Accordion("Opciones Generales de Análisis", open=True):
decimal_places_input = gr.Slider(0, 10, value=3, step=1, label="Precisión Decimal de Parámetros", info="0 para notación científica automática.")
show_params_input = gr.Checkbox(label="Mostrar Parámetros en Gráfico", value=True)
show_legend_input = gr.Checkbox(label="Mostrar Leyenda en Gráfico", value=True)
use_differential_input = gr.Checkbox(label="Usar EDO para graficar", value=False, info="Simula con ecuaciones diferenciales en lugar de la fórmula integral.")
maxfev_input = gr.Number(label="Iteraciones Máximas de Ajuste (maxfev)", value=50000)
with gr.Accordion("Etiquetas de los Ejes", open=True):
with gr.Row(): xlabel_input = gr.Textbox(label="Etiqueta Eje X", value="Tiempo (h)", interactive=True)
with gr.Row():
ylabel_biomass_input = gr.Textbox(label="Etiqueta Biomasa", value="Biomasa (g/L)", interactive=True)
ylabel_substrate_input = gr.Textbox(label="Etiqueta Sustrato", value="Sustrato (g/L)", interactive=True)
ylabel_product_input = gr.Textbox(label="Etiqueta Producto", value="Producto (g/L)", interactive=True)
with gr.Accordion("Opciones de Estilo (Modo 'Average' y 'Combined')", open=False):
style_input = gr.Dropdown(['whitegrid', 'darkgrid', 'white', 'dark', 'ticks'], label="Estilo General (Matplotlib)", value='whitegrid')
with gr.Row():
with gr.Column():
gr.Markdown("**Biomasa**"); biomass_point_color_input = gr.ColorPicker(label="Color Puntos", value='#0072B2'); biomass_line_color_input = gr.ColorPicker(label="Color Línea", value='#56B4E9'); biomass_marker_style_input = gr.Dropdown(['o','s','^','D','p','*','X'], label="Marcador", value='o'); biomass_line_style_input = gr.Dropdown(['-','--','-.',':'], label="Estilo Línea", value='-')
with gr.Column():
gr.Markdown("**Sustrato**"); substrate_point_color_input = gr.ColorPicker(label="Color Puntos", value='#009E73'); substrate_line_color_input = gr.ColorPicker(label="Color Línea", value='#34E499'); substrate_marker_style_input = gr.Dropdown(['o','s','^','D','p','*','X'], label="Marcador", value='s'); substrate_line_style_input = gr.Dropdown(['-','--','-.',':'], label="Estilo Línea", value='--')
with gr.Column():
gr.Markdown("**Producto**"); product_point_color_input = gr.ColorPicker(label="Color Puntos", value='#D55E00'); product_line_color_input = gr.ColorPicker(label="Color Línea", value='#F0E442'); product_marker_style_input = gr.Dropdown(['o','s','^','D','p','*','X'], label="Marcador", value='^'); product_line_style_input = gr.Dropdown(['-','--','-.',':'], label="Estilo Línea", value='-.')
with gr.Row():
legend_pos_input = gr.Radio(["best","upper right","upper left","lower left","lower right","center"], label="Posición Leyenda", value="best")
params_pos_input = gr.Radio(["upper right","upper left","lower right","lower left"], label="Posición Parámetros", value="upper right")
with gr.Accordion("Opciones de Barra de Error", open=False):
show_error_bars_input = gr.Checkbox(label="Mostrar barras de error (si hay réplicas)", value=True)
error_cap_size_input = gr.Slider(1, 10, 3, step=1, label="Tamaño Tapa Error")
error_line_width_input = gr.Slider(0.5, 5, 1.0, step=0.5, label="Grosor Línea Error")
simulate_btn = gr.Button("Analizar y Graficar", variant="primary")
# --- PESTAÑA 3: RESULTADOS ---
with gr.TabItem("3. Resultados"):
status_output = gr.Textbox(label="Estado del Análisis", interactive=False, lines=2)
gallery_output = gr.Gallery(label="Gráficos Generados", columns=1, height=600, object_fit="contain", preview=True)
with gr.Accordion("Descargar Reportes y Gráficos", open=True):
with gr.Row():
zip_btn = gr.Button("Descargar Gráficos (.zip)"); word_btn = gr.Button("Descargar Reporte (.docx)"); pdf_btn = gr.Button("Descargar Reporte (.pdf)")
download_output = gr.File(label="Archivo de Descarga", interactive=False)
gr.Markdown("### Tabla de Resultados Numéricos"); table_output = gr.DataFrame(wrap=True)
with gr.Row():
excel_btn = gr.Button("Descargar Tabla (.xlsx)"); csv_btn = gr.Button("Descargar Tabla (.csv)")
download_table_output = gr.File(label="Descargar Tabla", interactive=False)
df_for_export = gr.State(pd.DataFrame()); figures_for_export = gr.State([])
# --- LÓGICA DE CONEXIÓN (WRAPPER Y EVENTOS .CLICK()) ---
demo.queue()
def simulation_wrapper(file, models, mode, engine, names, use_diff, s_par, s_leg, maxfev, decimals, x_label, bio_label, sub_label, prod_label, style, s_err, cap, lw, l_pos, p_pos, bio_pc, bio_lc, bio_ms, bio_ls, sub_pc, sub_lc, sub_ms, sub_ls, prod_pc, prod_lc, prod_ms, prod_ls):
try:
def rgba_to_hex(rgba_string: str) -> str:
if not isinstance(rgba_string, str) or rgba_string.startswith('#'): return rgba_string
try:
parts = rgba_string.lower().replace('rgba', '').replace('rgb', '').replace('(', '').replace(')', '')
r, g, b, *_ = map(float, parts.split(',')); return f'#{int(r):02x}{int(g):02x}{int(b):02x}'
except (ValueError, TypeError): return "#000000"
plot_settings = {
'decimal_places': int(decimals), 'use_differential': use_diff, 'style': style, 'show_legend': s_leg, 'show_params': s_par, 'maxfev': int(maxfev),
'axis_labels': {'x_label': x_label, 'biomass_label': bio_label, 'substrate_label': sub_label, 'product_label': prod_label},
'legend_pos': l_pos, 'params_pos': p_pos, 'show_error_bars': s_err, 'error_cap_size': cap, 'error_line_width': lw,
f'{C_BIOMASS}_point_color': rgba_to_hex(bio_pc), f'{C_BIOMASS}_line_color': rgba_to_hex(bio_lc), f'{C_BIOMASS}_marker_style': bio_ms, f'{C_BIOMASS}_line_style': bio_ls,
f'{C_SUBSTRATE}_point_color': rgba_to_hex(sub_pc), f'{C_SUBSTRATE}_line_color': rgba_to_hex(sub_lc), f'{C_SUBSTRATE}_marker_style': sub_ms, f'{C_SUBSTRATE}_line_style': sub_ls,
f'{C_PRODUCT}_point_color': rgba_to_hex(prod_pc), f'{C_PRODUCT}_line_color': rgba_to_hex(prod_lc), f'{C_PRODUCT}_marker_style': prod_ms, f'{C_PRODUCT}_line_style': prod_ls,
}
figures, df_ui, msg, df_export = run_analysis(file, models, mode, engine, names, plot_settings)
image_list = []
for fig in figures:
buf = io.BytesIO()
if isinstance(fig, go.Figure): buf.write(fig.to_image(format="png", scale=2, engine="kaleido"))
elif isinstance(fig, plt.Figure): fig.savefig(buf, format='png', bbox_inches='tight', dpi=150); plt.close(fig)
buf.seek(0); image_list.append(Image.open(buf).convert("RGB"))
return image_list, df_ui, msg, df_export, figures
except Exception as e:
print(f"--- ERROR CAPTURADO EN WRAPPER ---\n{traceback.format_exc()}"); return [], pd.DataFrame(), f"Error Crítico: {e}", pd.DataFrame(), []
all_inputs = [
file_input, model_selection_input, analysis_mode_input, plotting_engine_input, exp_names_input,
use_differential_input, show_params_input, show_legend_input, maxfev_input, decimal_places_input,
xlabel_input, ylabel_biomass_input, ylabel_substrate_input, ylabel_product_input,
style_input, show_error_bars_input, error_cap_size_input, error_line_width_input, legend_pos_input, params_pos_input,
biomass_point_color_input, biomass_line_color_input, biomass_marker_style_input, biomass_line_style_input,
substrate_point_color_input, substrate_line_color_input, substrate_marker_style_input, substrate_line_style_input,
product_point_color_input, product_line_color_input, product_marker_style_input, product_line_style_input
]
all_outputs = [gallery_output, table_output, status_output, df_for_export, figures_for_export]
simulate_btn.click(fn=simulation_wrapper, inputs=all_inputs, outputs=all_outputs)
zip_btn.click(fn=create_zip_file, inputs=[figures_for_export], outputs=[download_output])
word_btn.click(fn=create_word_report, inputs=[figures_for_export, df_for_export, decimal_places_input], outputs=[download_output])
pdf_btn.click(fn=create_pdf_report, inputs=[figures_for_export, df_for_export, decimal_places_input], outputs=[download_output])
def export_table_to_file(df: pd.DataFrame, file_format: str) -> Optional[str]:
if df is None or df.empty: gr.Warning("No hay datos para exportar."); return None
suffix = ".xlsx" if file_format == "excel" else ".csv"
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp:
if file_format == "excel": df.to_excel(tmp.name, index=False)
else: df.to_csv(tmp.name, index=False, encoding='utf-8-sig')
return tmp.name
excel_btn.click(fn=lambda df: export_table_to_file(df, "excel"), inputs=[df_for_export], outputs=[download_table_output])
csv_btn.click(fn=lambda df: export_table_to_file(df, "csv"), inputs=[df_for_export], outputs=[download_table_output])
return demo
# --- PUNTO DE ENTRADA PRINCIPAL ---
if __name__ == '__main__':
"""
Este bloque se ejecuta solo cuando el script es llamado directamente.
Crea la interfaz de Gradio y la lanza, haciendo que la aplicación
esté disponible en una URL local (y opcionalmente pública si share=True).
"""
# Todas las funciones necesarias (create_gradio_interface, run_analysis,
# funciones de ploteo y reporte) ya están definidas en el alcance global,
# por lo que no es necesario rellenar nada aquí.
# Crear la aplicación Gradio llamando a la función que la construye.
gradio_app = create_gradio_interface()
# Lanzar la aplicación.
# share=True: Crea un túnel público temporal a tu aplicación (útil para compartir).
# debug=True: Muestra más información de depuración en la consola si ocurren errores.
gradio_app.launch(share=True, debug=True) |