Update app.py
Browse files
app.py
CHANGED
@@ -98,7 +98,6 @@ TRANSLATIONS = {
|
|
98 |
"guide": "User Guide",
|
99 |
"api_docs": "API Documentation"
|
100 |
},
|
101 |
-
# Agregar más traducciones según necesidad
|
102 |
}
|
103 |
|
104 |
# --- CONSTANTES MEJORADAS ---
|
@@ -109,7 +108,7 @@ C_PRODUCT = 'product'
|
|
109 |
C_OXYGEN = 'oxygen'
|
110 |
C_CO2 = 'co2'
|
111 |
C_PH = 'ph'
|
112 |
-
COMPONENTS = [C_BIOMASS, C_SUBSTRATE, C_PRODUCT
|
113 |
|
114 |
# --- SISTEMA DE TEMAS ---
|
115 |
THEMES = {
|
@@ -132,7 +131,7 @@ THEMES = {
|
|
132 |
)
|
133 |
}
|
134 |
|
135 |
-
# --- MODELOS CINÉTICOS
|
136 |
|
137 |
class KineticModel(ABC):
|
138 |
def __init__(self, name: str, display_name: str, param_names: List[str],
|
@@ -160,7 +159,7 @@ class KineticModel(ABC):
|
|
160 |
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
|
161 |
pass
|
162 |
|
163 |
-
#
|
164 |
class LogisticModel(KineticModel):
|
165 |
def __init__(self):
|
166 |
super().__init__(
|
@@ -178,9 +177,9 @@ class LogisticModel(KineticModel):
|
|
178 |
return np.full_like(t, np.nan)
|
179 |
exp_arg = np.clip(um * t, -700, 700)
|
180 |
term_exp = np.exp(exp_arg)
|
181 |
-
denominator =
|
182 |
denominator = np.where(denominator == 0, 1e-9, denominator)
|
183 |
-
return (X0 * term_exp * Xm) /
|
184 |
|
185 |
def diff_function(self, X: float, t: float, params: List[float]) -> float:
|
186 |
_, Xm, um = params
|
@@ -198,7 +197,109 @@ class LogisticModel(KineticModel):
|
|
198 |
max_biomass = max(biomass) if len(biomass) > 0 else 1.0
|
199 |
return ([1e-9, initial_biomass, 1e-9], [max_biomass * 1.2, max_biomass * 5, np.inf])
|
200 |
|
201 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
class MonodModel(KineticModel):
|
203 |
def __init__(self):
|
204 |
super().__init__(
|
@@ -228,6 +329,7 @@ class MonodModel(KineticModel):
|
|
228 |
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
|
229 |
return ([0.01, 0.001, 0.1, 0.0], [2.0, 5.0, 1.0, 0.1])
|
230 |
|
|
|
231 |
class ContoisModel(KineticModel):
|
232 |
def __init__(self):
|
233 |
super().__init__(
|
@@ -254,6 +356,7 @@ class ContoisModel(KineticModel):
|
|
254 |
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
|
255 |
return ([0.01, 0.01, 0.1, 0.0], [2.0, 10.0, 1.0, 0.1])
|
256 |
|
|
|
257 |
class AndrewsModel(KineticModel):
|
258 |
def __init__(self):
|
259 |
super().__init__(
|
@@ -280,6 +383,7 @@ class AndrewsModel(KineticModel):
|
|
280 |
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
|
281 |
return ([0.01, 0.001, 1.0, 0.1, 0.0], [2.0, 5.0, 200.0, 1.0, 0.1])
|
282 |
|
|
|
283 |
class TessierModel(KineticModel):
|
284 |
def __init__(self):
|
285 |
super().__init__(
|
@@ -296,12 +400,17 @@ class TessierModel(KineticModel):
|
|
296 |
# Implementación simplificada
|
297 |
return X0 * np.exp(μmax * t * 0.5) # Aproximación
|
298 |
|
|
|
|
|
|
|
|
|
299 |
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
|
300 |
return [0.5, 1.0, biomass[0] if len(biomass) > 0 else 0.1]
|
301 |
|
302 |
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
|
303 |
return ([0.01, 0.1, 1e-9], [2.0, 10.0, 1.0])
|
304 |
|
|
|
305 |
class RichardsModel(KineticModel):
|
306 |
def __init__(self):
|
307 |
super().__init__(
|
@@ -337,6 +446,7 @@ class RichardsModel(KineticModel):
|
|
337 |
[max_biomass * 2, 5.0, max_time, 10.0, max_biomass]
|
338 |
)
|
339 |
|
|
|
340 |
class StannardModel(KineticModel):
|
341 |
def __init__(self):
|
342 |
super().__init__(
|
@@ -368,6 +478,7 @@ class StannardModel(KineticModel):
|
|
368 |
max_time = max(time) if len(time) > 0 else 100.0
|
369 |
return ([0.1, 0.01, -max_time/10, 0.1], [max_biomass * 2, 5.0, max_time/2, 3.0])
|
370 |
|
|
|
371 |
class HuangModel(KineticModel):
|
372 |
def __init__(self):
|
373 |
super().__init__(
|
@@ -435,6 +546,60 @@ class BioprocessFitter:
|
|
435 |
self.data_time: Optional[np.ndarray] = None
|
436 |
self.data_means: Dict[str, Optional[np.ndarray]] = {c: None for c in COMPONENTS}
|
437 |
self.data_stds: Dict[str, Optional[np.ndarray]] = {c: None for c in COMPONENTS}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
438 |
|
439 |
def _calculate_metrics(self, y_true: np.ndarray, y_pred: np.ndarray,
|
440 |
n_params: int) -> Dict[str, float]:
|
@@ -508,15 +673,106 @@ class BioprocessFitter:
|
|
508 |
return None, {'r2': np.nan, 'rmse': np.nan, 'mae': np.nan,
|
509 |
'aic': np.nan, 'bic': np.nan}
|
510 |
|
511 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
512 |
|
513 |
# --- FUNCIONES DE PLOTEO MEJORADAS CON PLOTLY ---
|
514 |
|
515 |
def create_interactive_plot(plot_config: Dict, models_results: List[Dict],
|
516 |
selected_component: str = "all") -> go.Figure:
|
517 |
-
"""
|
518 |
-
Crea un gráfico interactivo mejorado con Plotly
|
519 |
-
"""
|
520 |
time_exp = plot_config['time_exp']
|
521 |
time_fine = np.linspace(min(time_exp), max(time_exp), 500)
|
522 |
|
@@ -572,8 +828,7 @@ def create_interactive_plot(plot_config: Dict, models_results: List[Dict],
|
|
572 |
color = colors[i % len(colors)]
|
573 |
model_name = AVAILABLE_MODELS[res["name"]].display_name
|
574 |
|
575 |
-
for comp, row, key in zip(components_to_plot, rows,
|
576 |
-
['X', 'S', 'P']):
|
577 |
if res.get(key) is not None:
|
578 |
trace = go.Scatter(
|
579 |
x=time_fine,
|
@@ -591,9 +846,12 @@ def create_interactive_plot(plot_config: Dict, models_results: List[Dict],
|
|
591 |
fig.add_trace(trace)
|
592 |
|
593 |
# Actualizar diseño
|
|
|
|
|
|
|
594 |
fig.update_layout(
|
595 |
title=f"Análisis de Cinéticas: {plot_config.get('exp_name', '')}",
|
596 |
-
template=
|
597 |
hovermode='x unified',
|
598 |
legend=dict(
|
599 |
orientation="v",
|
@@ -650,6 +908,96 @@ def create_interactive_plot(plot_config: Dict, models_results: List[Dict],
|
|
650 |
|
651 |
return fig
|
652 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
653 |
# --- API ENDPOINTS PARA AGENTES DE IA ---
|
654 |
|
655 |
app = FastAPI(title="Bioprocess Kinetics API", version="2.0")
|
@@ -664,14 +1012,7 @@ async def analyze_data(
|
|
664 |
models: List[str],
|
665 |
options: Optional[Dict[str, Any]] = None
|
666 |
):
|
667 |
-
"""
|
668 |
-
Endpoint para análisis de datos cinéticos
|
669 |
-
|
670 |
-
Parameters:
|
671 |
-
- data: Diccionario con 'time', 'biomass', 'substrate', 'product'
|
672 |
-
- models: Lista de nombres de modelos a ajustar
|
673 |
-
- options: Opciones adicionales de análisis
|
674 |
-
"""
|
675 |
try:
|
676 |
results = {}
|
677 |
|
@@ -757,19 +1098,7 @@ def create_gradio_interface() -> gr.Blocks:
|
|
757 |
lang = Language[lang_key]
|
758 |
trans = TRANSLATIONS.get(lang, TRANSLATIONS[Language.ES])
|
759 |
|
760 |
-
return
|
761 |
-
title_text: trans["title"],
|
762 |
-
subtitle_text: trans["subtitle"],
|
763 |
-
upload_label: trans["upload"],
|
764 |
-
models_label: trans["select_models"],
|
765 |
-
analyze_button: trans["analyze"],
|
766 |
-
# ... actualizar todos los componentes
|
767 |
-
}
|
768 |
-
|
769 |
-
def toggle_theme(is_dark: bool) -> gr.Blocks:
|
770 |
-
"""Cambia entre tema claro y oscuro"""
|
771 |
-
theme = THEMES["dark"] if is_dark else THEMES["light"]
|
772 |
-
return gr.Blocks(theme=theme)
|
773 |
|
774 |
# Obtener opciones de modelo
|
775 |
MODEL_CHOICES = [(model.display_name, model.name) for model in AVAILABLE_MODELS.values()]
|
@@ -906,91 +1235,78 @@ def create_gradio_interface() -> gr.Blocks:
|
|
906 |
api_docs_button = gr.Button("📖 Ver Documentación API")
|
907 |
|
908 |
download_file = gr.File(label="Archivo descargado")
|
909 |
-
|
910 |
-
# --- TAB 4: API ---
|
911 |
-
with gr.TabItem("🔌 API"):
|
912 |
-
gr.Markdown("""
|
913 |
-
## Documentación de la API
|
914 |
-
|
915 |
-
La API REST permite integrar el análisis de cinéticas en aplicaciones externas
|
916 |
-
y agentes de IA.
|
917 |
-
|
918 |
-
### Endpoints disponibles:
|
919 |
-
|
920 |
-
#### 1. `GET /api/models`
|
921 |
-
Retorna la lista de modelos disponibles con su información.
|
922 |
-
|
923 |
-
```python
|
924 |
-
import requests
|
925 |
-
response = requests.get("http://localhost:8000/api/models")
|
926 |
-
models = response.json()
|
927 |
-
```
|
928 |
|
929 |
-
|
930 |
-
|
931 |
-
|
932 |
-
|
933 |
-
|
934 |
-
|
935 |
-
|
936 |
-
|
937 |
-
|
938 |
-
|
939 |
-
|
940 |
-
|
941 |
-
|
942 |
-
|
943 |
-
|
944 |
-
|
945 |
-
|
946 |
-
|
947 |
-
|
948 |
-
|
949 |
-
|
950 |
-
|
951 |
-
|
952 |
-
|
953 |
-
|
954 |
-
|
955 |
-
|
956 |
-
|
957 |
-
|
958 |
-
|
959 |
-
|
960 |
-
|
961 |
-
|
962 |
-
|
963 |
-
|
964 |
-
|
965 |
-
|
966 |
-
|
967 |
-
|
968 |
-
|
969 |
-
|
970 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
971 |
|
972 |
# --- EVENTOS ---
|
973 |
|
974 |
-
def run_analysis_wrapper(file, models, component, use_de, maxfev, exp_names):
|
975 |
"""Wrapper para ejecutar el análisis"""
|
976 |
try:
|
977 |
-
|
978 |
-
|
979 |
-
fig = create_interactive_plot(
|
980 |
-
{"time_exp": np.linspace(0, 10, 20)},
|
981 |
-
[{"name": m, "X": np.random.rand(500)*10} for m in models[:2]],
|
982 |
-
component
|
983 |
-
)
|
984 |
-
|
985 |
-
df = pd.DataFrame({
|
986 |
-
"Modelo": ["Logístico", "Gompertz"],
|
987 |
-
"R²": [0.95, 0.93],
|
988 |
-
"RMSE": [0.12, 0.15]
|
989 |
-
})
|
990 |
-
|
991 |
-
return fig, df, "Análisis completado exitosamente"
|
992 |
-
|
993 |
except Exception as e:
|
|
|
994 |
return None, pd.DataFrame(), f"Error: {str(e)}"
|
995 |
|
996 |
analyze_button.click(
|
@@ -1001,7 +1317,8 @@ def create_gradio_interface() -> gr.Blocks:
|
|
1001 |
component_selector,
|
1002 |
use_de_input,
|
1003 |
maxfev_input,
|
1004 |
-
exp_names_input
|
|
|
1005 |
],
|
1006 |
outputs=[plot_output, results_table, status_output]
|
1007 |
)
|
@@ -1010,20 +1327,47 @@ def create_gradio_interface() -> gr.Blocks:
|
|
1010 |
language_select.change(
|
1011 |
fn=change_language,
|
1012 |
inputs=[language_select],
|
1013 |
-
outputs=[title_text, subtitle_text]
|
1014 |
)
|
1015 |
|
1016 |
# Cambio de tema
|
1017 |
def apply_theme(is_dark):
|
1018 |
-
|
1019 |
-
# Por limitaciones de Gradio, esto requeriría recargar la interfaz
|
1020 |
-
return gr.Info("Tema cambiado. Recarga la página para ver los cambios.")
|
1021 |
|
1022 |
theme_toggle.change(
|
1023 |
fn=apply_theme,
|
1024 |
inputs=[theme_toggle],
|
1025 |
outputs=[]
|
1026 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1027 |
|
1028 |
return demo
|
1029 |
|
|
|
98 |
"guide": "User Guide",
|
99 |
"api_docs": "API Documentation"
|
100 |
},
|
|
|
101 |
}
|
102 |
|
103 |
# --- CONSTANTES MEJORADAS ---
|
|
|
108 |
C_OXYGEN = 'oxygen'
|
109 |
C_CO2 = 'co2'
|
110 |
C_PH = 'ph'
|
111 |
+
COMPONENTS = [C_BIOMASS, C_SUBSTRATE, C_PRODUCT]
|
112 |
|
113 |
# --- SISTEMA DE TEMAS ---
|
114 |
THEMES = {
|
|
|
131 |
)
|
132 |
}
|
133 |
|
134 |
+
# --- MODELOS CINÉTICOS COMPLETOS ---
|
135 |
|
136 |
class KineticModel(ABC):
|
137 |
def __init__(self, name: str, display_name: str, param_names: List[str],
|
|
|
159 |
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
|
160 |
pass
|
161 |
|
162 |
+
# Modelo Logístico
|
163 |
class LogisticModel(KineticModel):
|
164 |
def __init__(self):
|
165 |
super().__init__(
|
|
|
177 |
return np.full_like(t, np.nan)
|
178 |
exp_arg = np.clip(um * t, -700, 700)
|
179 |
term_exp = np.exp(exp_arg)
|
180 |
+
denominator = Xm - X0 + X0 * term_exp
|
181 |
denominator = np.where(denominator == 0, 1e-9, denominator)
|
182 |
+
return (X0 * term_exp * Xm) / denominator
|
183 |
|
184 |
def diff_function(self, X: float, t: float, params: List[float]) -> float:
|
185 |
_, Xm, um = params
|
|
|
197 |
max_biomass = max(biomass) if len(biomass) > 0 else 1.0
|
198 |
return ([1e-9, initial_biomass, 1e-9], [max_biomass * 1.2, max_biomass * 5, np.inf])
|
199 |
|
200 |
+
# Modelo Gompertz
|
201 |
+
class GompertzModel(KineticModel):
|
202 |
+
def __init__(self):
|
203 |
+
super().__init__(
|
204 |
+
"gompertz",
|
205 |
+
"Gompertz",
|
206 |
+
["Xm", "μm", "λ"],
|
207 |
+
"Modelo de crecimiento asimétrico con fase lag",
|
208 |
+
r"X(t) = X_m \exp\left(-\exp\left(\frac{\mu_m e}{X_m}(\lambda-t)+1\right)\right)",
|
209 |
+
"Gompertz (1825)"
|
210 |
+
)
|
211 |
+
|
212 |
+
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
|
213 |
+
Xm, um, lag = params
|
214 |
+
if Xm <= 0 or um <= 0:
|
215 |
+
return np.full_like(t, np.nan)
|
216 |
+
exp_term = (um * np.e / Xm) * (lag - t) + 1
|
217 |
+
exp_term_clipped = np.clip(exp_term, -700, 700)
|
218 |
+
return Xm * np.exp(-np.exp(exp_term_clipped))
|
219 |
+
|
220 |
+
def diff_function(self, X: float, t: float, params: List[float]) -> float:
|
221 |
+
Xm, um, lag = params
|
222 |
+
k_val = um * np.e / Xm
|
223 |
+
u_val = k_val * (lag - t) + 1
|
224 |
+
u_val_clipped = np.clip(u_val, -np.inf, 700)
|
225 |
+
return X * k_val * np.exp(u_val_clipped) if Xm > 0 and X > 0 else 0.0
|
226 |
+
|
227 |
+
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
|
228 |
+
return [
|
229 |
+
max(biomass) if len(biomass) > 0 else 1.0,
|
230 |
+
0.1,
|
231 |
+
time[np.argmax(np.gradient(biomass))] if len(biomass) > 1 else 0
|
232 |
+
]
|
233 |
+
|
234 |
+
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
|
235 |
+
initial_biomass = min(biomass) if len(biomass) > 0 else 1e-9
|
236 |
+
max_biomass = max(biomass) if len(biomass) > 0 else 1.0
|
237 |
+
return ([max(1e-9, initial_biomass), 1e-9, 0], [max_biomass * 5, np.inf, max(time) if len(time) > 0 else 1])
|
238 |
+
|
239 |
+
# Modelo Moser
|
240 |
+
class MoserModel(KineticModel):
|
241 |
+
def __init__(self):
|
242 |
+
super().__init__(
|
243 |
+
"moser",
|
244 |
+
"Moser",
|
245 |
+
["Xm", "μm", "Ks"],
|
246 |
+
"Modelo exponencial simple de Moser",
|
247 |
+
r"X(t) = X_m (1 - e^{-\mu_m (t - K_s)})",
|
248 |
+
"Moser (1958)"
|
249 |
+
)
|
250 |
+
|
251 |
+
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
|
252 |
+
Xm, um, Ks = params
|
253 |
+
return Xm * (1 - np.exp(-um * (t - Ks))) if Xm > 0 and um > 0 else np.full_like(t, np.nan)
|
254 |
+
|
255 |
+
def diff_function(self, X: float, t: float, params: List[float]) -> float:
|
256 |
+
Xm, um, _ = params
|
257 |
+
return um * (Xm - X) if Xm > 0 else 0.0
|
258 |
+
|
259 |
+
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
|
260 |
+
return [max(biomass) if len(biomass) > 0 else 1.0, 0.1, 0]
|
261 |
+
|
262 |
+
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
|
263 |
+
initial_biomass = min(biomass) if len(biomass) > 0 else 1e-9
|
264 |
+
max_biomass = max(biomass) if len(biomass) > 0 else 1.0
|
265 |
+
return ([max(1e-9, initial_biomass), 1e-9, -np.inf], [max_biomass * 5, np.inf, np.inf])
|
266 |
+
|
267 |
+
# Modelo Baranyi
|
268 |
+
class BaranyiModel(KineticModel):
|
269 |
+
def __init__(self):
|
270 |
+
super().__init__(
|
271 |
+
"baranyi",
|
272 |
+
"Baranyi",
|
273 |
+
["X0", "Xm", "μm", "λ"],
|
274 |
+
"Modelo de Baranyi con fase lag explícita",
|
275 |
+
r"X(t) = X_m / [1 + ((X_m/X_0) - 1) \exp(-\mu_m A(t))]",
|
276 |
+
"Baranyi & Roberts (1994)"
|
277 |
+
)
|
278 |
+
|
279 |
+
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
|
280 |
+
X0, Xm, um, lag = params
|
281 |
+
if X0 <= 0 or Xm <= X0 or um <= 0 or lag < 0:
|
282 |
+
return np.full_like(t, np.nan)
|
283 |
+
A_t = t + (1 / um) * np.log(np.exp(-um * t) + np.exp(-um * lag) - np.exp(-um * (t + lag)))
|
284 |
+
exp_um_At = np.exp(np.clip(um * A_t, -700, 700))
|
285 |
+
numerator = Xm
|
286 |
+
denominator = 1 + ((Xm / X0) - 1) * (1 / exp_um_At)
|
287 |
+
return numerator / np.where(denominator == 0, 1e-9, denominator)
|
288 |
+
|
289 |
+
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
|
290 |
+
return [
|
291 |
+
biomass[0] if len(biomass) > 0 and biomass[0] > 1e-6 else 1e-3,
|
292 |
+
max(biomass) if len(biomass) > 0 else 1.0,
|
293 |
+
0.1,
|
294 |
+
time[np.argmax(np.gradient(biomass))] if len(biomass) > 1 else 0.0
|
295 |
+
]
|
296 |
+
|
297 |
+
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
|
298 |
+
initial_biomass = biomass[0] if len(biomass) > 0 else 1e-9
|
299 |
+
max_biomass = max(biomass) if len(biomass) > 0 else 1.0
|
300 |
+
return ([1e-9, max(1e-9, initial_biomass), 1e-9, 0], [max_biomass * 1.2, max_biomass * 10, np.inf, max(time) if len(time) > 0 else 1])
|
301 |
+
|
302 |
+
# Modelo Monod
|
303 |
class MonodModel(KineticModel):
|
304 |
def __init__(self):
|
305 |
super().__init__(
|
|
|
329 |
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
|
330 |
return ([0.01, 0.001, 0.1, 0.0], [2.0, 5.0, 1.0, 0.1])
|
331 |
|
332 |
+
# Modelo Contois
|
333 |
class ContoisModel(KineticModel):
|
334 |
def __init__(self):
|
335 |
super().__init__(
|
|
|
356 |
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
|
357 |
return ([0.01, 0.01, 0.1, 0.0], [2.0, 10.0, 1.0, 0.1])
|
358 |
|
359 |
+
# Modelo Andrews
|
360 |
class AndrewsModel(KineticModel):
|
361 |
def __init__(self):
|
362 |
super().__init__(
|
|
|
383 |
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
|
384 |
return ([0.01, 0.001, 1.0, 0.1, 0.0], [2.0, 5.0, 200.0, 1.0, 0.1])
|
385 |
|
386 |
+
# Modelo Tessier
|
387 |
class TessierModel(KineticModel):
|
388 |
def __init__(self):
|
389 |
super().__init__(
|
|
|
400 |
# Implementación simplificada
|
401 |
return X0 * np.exp(μmax * t * 0.5) # Aproximación
|
402 |
|
403 |
+
def diff_function(self, X: float, t: float, params: List[float]) -> float:
|
404 |
+
μmax, Ks, X0 = params
|
405 |
+
return μmax * X * 0.5 # Simplificado
|
406 |
+
|
407 |
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
|
408 |
return [0.5, 1.0, biomass[0] if len(biomass) > 0 else 0.1]
|
409 |
|
410 |
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
|
411 |
return ([0.01, 0.1, 1e-9], [2.0, 10.0, 1.0])
|
412 |
|
413 |
+
# Modelo Richards
|
414 |
class RichardsModel(KineticModel):
|
415 |
def __init__(self):
|
416 |
super().__init__(
|
|
|
446 |
[max_biomass * 2, 5.0, max_time, 10.0, max_biomass]
|
447 |
)
|
448 |
|
449 |
+
# Modelo Stannard
|
450 |
class StannardModel(KineticModel):
|
451 |
def __init__(self):
|
452 |
super().__init__(
|
|
|
478 |
max_time = max(time) if len(time) > 0 else 100.0
|
479 |
return ([0.1, 0.01, -max_time/10, 0.1], [max_biomass * 2, 5.0, max_time/2, 3.0])
|
480 |
|
481 |
+
# Modelo Huang
|
482 |
class HuangModel(KineticModel):
|
483 |
def __init__(self):
|
484 |
super().__init__(
|
|
|
546 |
self.data_time: Optional[np.ndarray] = None
|
547 |
self.data_means: Dict[str, Optional[np.ndarray]] = {c: None for c in COMPONENTS}
|
548 |
self.data_stds: Dict[str, Optional[np.ndarray]] = {c: None for c in COMPONENTS}
|
549 |
+
|
550 |
+
def _get_biomass_at_t(self, t: np.ndarray, p: List[float]) -> np.ndarray:
|
551 |
+
return self.model.model_function(t, *p)
|
552 |
+
|
553 |
+
def _get_initial_biomass(self, p: List[float]) -> float:
|
554 |
+
if not p: return 0.0
|
555 |
+
if any(k in self.model.param_names for k in ["Xo", "X0"]):
|
556 |
+
try:
|
557 |
+
idx = self.model.param_names.index("Xo") if "Xo" in self.model.param_names else self.model.param_names.index("X0")
|
558 |
+
return p[idx]
|
559 |
+
except (ValueError, IndexError): pass
|
560 |
+
return float(self.model.model_function(np.array([0]), *p)[0])
|
561 |
+
|
562 |
+
def _calc_integral(self, t: np.ndarray, p: List[float]) -> Tuple[np.ndarray, np.ndarray]:
|
563 |
+
X_t = self._get_biomass_at_t(t, p)
|
564 |
+
if np.any(np.isnan(X_t)): return np.full_like(t, np.nan), np.full_like(t, np.nan)
|
565 |
+
integral_X = np.zeros_like(X_t)
|
566 |
+
if len(t) > 1:
|
567 |
+
dt = np.diff(t, prepend=t[0] - (t[1] - t[0] if len(t) > 1 else 1))
|
568 |
+
integral_X = np.cumsum(X_t * dt)
|
569 |
+
return integral_X, X_t
|
570 |
+
|
571 |
+
def substrate(self, t: np.ndarray, so: float, p_c: float, q: float, bio_p: List[float]) -> np.ndarray:
|
572 |
+
integral, X_t = self._calc_integral(t, bio_p)
|
573 |
+
X0 = self._get_initial_biomass(bio_p)
|
574 |
+
return so - p_c * (X_t - X0) - q * integral
|
575 |
+
|
576 |
+
def product(self, t: np.ndarray, po: float, alpha: float, beta: float, bio_p: List[float]) -> np.ndarray:
|
577 |
+
integral, X_t = self._calc_integral(t, bio_p)
|
578 |
+
X0 = self._get_initial_biomass(bio_p)
|
579 |
+
return po + alpha * (X_t - X0) + beta * integral
|
580 |
+
|
581 |
+
def process_data_from_df(self, df: pd.DataFrame) -> None:
|
582 |
+
try:
|
583 |
+
time_col = [c for c in df.columns if c[1].strip().lower() == C_TIME][0]
|
584 |
+
self.data_time = df[time_col].dropna().to_numpy()
|
585 |
+
min_len = len(self.data_time)
|
586 |
+
|
587 |
+
def extract(name: str) -> Tuple[np.ndarray, np.ndarray]:
|
588 |
+
cols = [c for c in df.columns if c[1].strip().lower() == name.lower()]
|
589 |
+
if not cols: return np.array([]), np.array([])
|
590 |
+
reps = [df[c].dropna().values[:min_len] for c in cols]
|
591 |
+
reps = [r for r in reps if len(r) == min_len]
|
592 |
+
if not reps: return np.array([]), np.array([])
|
593 |
+
arr = np.array(reps)
|
594 |
+
mean = np.mean(arr, axis=0)
|
595 |
+
std = np.std(arr, axis=0, ddof=1) if arr.shape[0] > 1 else np.zeros_like(mean)
|
596 |
+
return mean, std
|
597 |
+
|
598 |
+
self.data_means[C_BIOMASS], self.data_stds[C_BIOMASS] = extract('Biomasa')
|
599 |
+
self.data_means[C_SUBSTRATE], self.data_stds[C_SUBSTRATE] = extract('Sustrato')
|
600 |
+
self.data_means[C_PRODUCT], self.data_stds[C_PRODUCT] = extract('Producto')
|
601 |
+
except (IndexError, KeyError) as e:
|
602 |
+
raise ValueError(f"Estructura de DataFrame inválida. Error: {e}")
|
603 |
|
604 |
def _calculate_metrics(self, y_true: np.ndarray, y_pred: np.ndarray,
|
605 |
n_params: int) -> Dict[str, float]:
|
|
|
673 |
return None, {'r2': np.nan, 'rmse': np.nan, 'mae': np.nan,
|
674 |
'aic': np.nan, 'bic': np.nan}
|
675 |
|
676 |
+
def fit_all_models(self) -> None:
|
677 |
+
t, bio_m, bio_s = self.data_time, self.data_means[C_BIOMASS], self.data_stds[C_BIOMASS]
|
678 |
+
if t is None or bio_m is None or len(bio_m) == 0: return
|
679 |
+
popt_bio = self._fit_biomass_model(t, bio_m, bio_s)
|
680 |
+
if popt_bio:
|
681 |
+
bio_p = list(self.params[C_BIOMASS].values())
|
682 |
+
if self.data_means[C_SUBSTRATE] is not None and len(self.data_means[C_SUBSTRATE]) > 0:
|
683 |
+
self._fit_substrate_model(t, self.data_means[C_SUBSTRATE], self.data_stds[C_SUBSTRATE], bio_p)
|
684 |
+
if self.data_means[C_PRODUCT] is not None and len(self.data_means[C_PRODUCT]) > 0:
|
685 |
+
self._fit_product_model(t, self.data_means[C_PRODUCT], self.data_stds[C_PRODUCT], bio_p)
|
686 |
+
|
687 |
+
def _fit_biomass_model(self, t, data, std):
|
688 |
+
p0, bounds = self.model.get_initial_params(t, data), self.model.get_param_bounds(t, data)
|
689 |
+
popt, metrics = self._fit_component(self.model.model_function, t, data, p0, bounds, std)
|
690 |
+
if popt:
|
691 |
+
self.params[C_BIOMASS] = dict(zip(self.model.param_names, popt))
|
692 |
+
self.r2[C_BIOMASS] = metrics['r2']
|
693 |
+
self.rmse[C_BIOMASS] = metrics['rmse']
|
694 |
+
self.mae[C_BIOMASS] = metrics['mae']
|
695 |
+
self.aic[C_BIOMASS] = metrics['aic']
|
696 |
+
self.bic[C_BIOMASS] = metrics['bic']
|
697 |
+
return popt
|
698 |
+
|
699 |
+
def _fit_substrate_model(self, t, data, std, bio_p):
|
700 |
+
p0, b = [data[0], 0.1, 0.01], ([0, -np.inf, -np.inf], [np.inf, np.inf, np.inf])
|
701 |
+
popt, metrics = self._fit_component(lambda t, so, p, q: self.substrate(t, so, p, q, bio_p), t, data, p0, b, std)
|
702 |
+
if popt:
|
703 |
+
self.params[C_SUBSTRATE] = {'So': popt[0], 'p': popt[1], 'q': popt[2]}
|
704 |
+
self.r2[C_SUBSTRATE] = metrics['r2']
|
705 |
+
self.rmse[C_SUBSTRATE] = metrics['rmse']
|
706 |
+
self.mae[C_SUBSTRATE] = metrics['mae']
|
707 |
+
self.aic[C_SUBSTRATE] = metrics['aic']
|
708 |
+
self.bic[C_SUBSTRATE] = metrics['bic']
|
709 |
+
|
710 |
+
def _fit_product_model(self, t, data, std, bio_p):
|
711 |
+
p0, b = [data[0] if len(data)>0 else 0, 0.1, 0.01], ([0, -np.inf, -np.inf], [np.inf, np.inf, np.inf])
|
712 |
+
popt, metrics = self._fit_component(lambda t, po, a, b: self.product(t, po, a, b, bio_p), t, data, p0, b, std)
|
713 |
+
if popt:
|
714 |
+
self.params[C_PRODUCT] = {'Po': popt[0], 'alpha': popt[1], 'beta': popt[2]}
|
715 |
+
self.r2[C_PRODUCT] = metrics['r2']
|
716 |
+
self.rmse[C_PRODUCT] = metrics['rmse']
|
717 |
+
self.mae[C_PRODUCT] = metrics['mae']
|
718 |
+
self.aic[C_PRODUCT] = metrics['aic']
|
719 |
+
self.bic[C_PRODUCT] = metrics['bic']
|
720 |
+
|
721 |
+
def system_ode(self, y, t, bio_p, sub_p, prod_p):
|
722 |
+
X, _, _ = y
|
723 |
+
dXdt = self.model.diff_function(X, t, bio_p)
|
724 |
+
return [dXdt, -sub_p.get('p',0)*dXdt - sub_p.get('q',0)*X, prod_p.get('alpha',0)*dXdt + prod_p.get('beta',0)*X]
|
725 |
+
|
726 |
+
def solve_odes(self, t_fine):
|
727 |
+
p = self.params
|
728 |
+
bio_d, sub_d, prod_d = p[C_BIOMASS], p[C_SUBSTRATE], p[C_PRODUCT]
|
729 |
+
if not bio_d: return None, None, None
|
730 |
+
try:
|
731 |
+
bio_p = list(bio_d.values())
|
732 |
+
y0 = [self._get_initial_biomass(bio_p), sub_d.get('So',0), prod_d.get('Po',0)]
|
733 |
+
sol = odeint(self.system_ode, y0, t_fine, args=(bio_p, sub_d, prod_d))
|
734 |
+
return sol[:, 0], sol[:, 1], sol[:, 2]
|
735 |
+
except:
|
736 |
+
return None, None, None
|
737 |
+
|
738 |
+
def _generate_fine_time_grid(self, t_exp):
|
739 |
+
return np.linspace(min(t_exp), max(t_exp), 500) if t_exp is not None and len(t_exp) > 1 else np.array([])
|
740 |
+
|
741 |
+
def get_model_curves_for_plot(self, t_fine, use_diff):
|
742 |
+
if use_diff and self.model.diff_function(1, 1, [1]*self.model.num_params) != 0:
|
743 |
+
return self.solve_odes(t_fine)
|
744 |
+
X, S, P = None, None, None
|
745 |
+
if self.params[C_BIOMASS]:
|
746 |
+
bio_p = list(self.params[C_BIOMASS].values())
|
747 |
+
X = self.model.model_function(t_fine, *bio_p)
|
748 |
+
if self.params[C_SUBSTRATE]:
|
749 |
+
S = self.substrate(t_fine, *list(self.params[C_SUBSTRATE].values()), bio_p)
|
750 |
+
if self.params[C_PRODUCT]:
|
751 |
+
P = self.product(t_fine, *list(self.params[C_PRODUCT].values()), bio_p)
|
752 |
+
return X, S, P
|
753 |
+
|
754 |
+
# --- FUNCIONES AUXILIARES ---
|
755 |
+
|
756 |
+
def format_number(value: Any, decimals: int) -> str:
|
757 |
+
"""Formatea un número para su visualización"""
|
758 |
+
if not isinstance(value, (int, float, np.number)) or pd.isna(value):
|
759 |
+
return "" if pd.isna(value) else str(value)
|
760 |
+
|
761 |
+
decimals = int(decimals)
|
762 |
+
|
763 |
+
if decimals == 0:
|
764 |
+
if 0 < abs(value) < 1:
|
765 |
+
return f"{value:.2e}"
|
766 |
+
else:
|
767 |
+
return str(int(round(value, 0)))
|
768 |
+
|
769 |
+
return str(round(value, decimals))
|
770 |
|
771 |
# --- FUNCIONES DE PLOTEO MEJORADAS CON PLOTLY ---
|
772 |
|
773 |
def create_interactive_plot(plot_config: Dict, models_results: List[Dict],
|
774 |
selected_component: str = "all") -> go.Figure:
|
775 |
+
"""Crea un gráfico interactivo mejorado con Plotly"""
|
|
|
|
|
776 |
time_exp = plot_config['time_exp']
|
777 |
time_fine = np.linspace(min(time_exp), max(time_exp), 500)
|
778 |
|
|
|
828 |
color = colors[i % len(colors)]
|
829 |
model_name = AVAILABLE_MODELS[res["name"]].display_name
|
830 |
|
831 |
+
for comp, row, key in zip(components_to_plot, rows, ['X', 'S', 'P']):
|
|
|
832 |
if res.get(key) is not None:
|
833 |
trace = go.Scatter(
|
834 |
x=time_fine,
|
|
|
846 |
fig.add_trace(trace)
|
847 |
|
848 |
# Actualizar diseño
|
849 |
+
theme = plot_config.get('theme', 'light')
|
850 |
+
template = "plotly_white" if theme == 'light' else "plotly_dark"
|
851 |
+
|
852 |
fig.update_layout(
|
853 |
title=f"Análisis de Cinéticas: {plot_config.get('exp_name', '')}",
|
854 |
+
template=template,
|
855 |
hovermode='x unified',
|
856 |
legend=dict(
|
857 |
orientation="v",
|
|
|
908 |
|
909 |
return fig
|
910 |
|
911 |
+
# --- FUNCIÓN PRINCIPAL DE ANÁLISIS ---
|
912 |
+
def run_analysis(file, model_names, component, use_de, maxfev, exp_names, theme='light'):
|
913 |
+
if not file: return None, pd.DataFrame(), "Error: Sube un archivo Excel."
|
914 |
+
if not model_names: return None, pd.DataFrame(), "Error: Selecciona un modelo."
|
915 |
+
|
916 |
+
try:
|
917 |
+
xls = pd.ExcelFile(file.name)
|
918 |
+
except Exception as e:
|
919 |
+
return None, pd.DataFrame(), f"Error al leer archivo: {e}"
|
920 |
+
|
921 |
+
results_data, msgs = [], []
|
922 |
+
models_results = []
|
923 |
+
|
924 |
+
exp_list = [n.strip() for n in exp_names.split('\n') if n.strip()] if exp_names else []
|
925 |
+
|
926 |
+
for i, sheet in enumerate(xls.sheet_names):
|
927 |
+
exp_name = exp_list[i] if i < len(exp_list) else f"Hoja '{sheet}'"
|
928 |
+
try:
|
929 |
+
df = pd.read_excel(xls, sheet_name=sheet, header=[0,1])
|
930 |
+
reader = BioprocessFitter(list(AVAILABLE_MODELS.values())[0])
|
931 |
+
reader.process_data_from_df(df)
|
932 |
+
|
933 |
+
if reader.data_time is None:
|
934 |
+
msgs.append(f"WARN: Sin datos de tiempo en '{sheet}'.")
|
935 |
+
continue
|
936 |
+
|
937 |
+
plot_config = {
|
938 |
+
'exp_name': exp_name,
|
939 |
+
'time_exp': reader.data_time,
|
940 |
+
'theme': theme
|
941 |
+
}
|
942 |
+
|
943 |
+
for c in COMPONENTS:
|
944 |
+
plot_config[f'{c}_exp'] = reader.data_means[c]
|
945 |
+
plot_config[f'{c}_std'] = reader.data_stds[c]
|
946 |
+
|
947 |
+
t_fine = reader._generate_fine_time_grid(reader.data_time)
|
948 |
+
|
949 |
+
for m_name in model_names:
|
950 |
+
if m_name not in AVAILABLE_MODELS:
|
951 |
+
msgs.append(f"WARN: Modelo '{m_name}' no disponible.")
|
952 |
+
continue
|
953 |
+
|
954 |
+
fitter = BioprocessFitter(
|
955 |
+
AVAILABLE_MODELS[m_name],
|
956 |
+
maxfev=int(maxfev),
|
957 |
+
use_differential_evolution=use_de
|
958 |
+
)
|
959 |
+
fitter.data_time = reader.data_time
|
960 |
+
fitter.data_means = reader.data_means
|
961 |
+
fitter.data_stds = reader.data_stds
|
962 |
+
fitter.fit_all_models()
|
963 |
+
|
964 |
+
row = {'Experimento': exp_name, 'Modelo': fitter.model.display_name}
|
965 |
+
for c in COMPONENTS:
|
966 |
+
if fitter.params[c]:
|
967 |
+
row.update({f'{c.capitalize()}_{k}': v for k, v in fitter.params[c].items()})
|
968 |
+
row[f'R2_{c.capitalize()}'] = fitter.r2.get(c)
|
969 |
+
row[f'RMSE_{c.capitalize()}'] = fitter.rmse.get(c)
|
970 |
+
row[f'MAE_{c.capitalize()}'] = fitter.mae.get(c)
|
971 |
+
row[f'AIC_{c.capitalize()}'] = fitter.aic.get(c)
|
972 |
+
row[f'BIC_{c.capitalize()}'] = fitter.bic.get(c)
|
973 |
+
|
974 |
+
results_data.append(row)
|
975 |
+
|
976 |
+
X, S, P = fitter.get_model_curves_for_plot(t_fine, False)
|
977 |
+
models_results.append({
|
978 |
+
'name': m_name,
|
979 |
+
'X': X,
|
980 |
+
'S': S,
|
981 |
+
'P': P,
|
982 |
+
'params': fitter.params,
|
983 |
+
'r2': fitter.r2,
|
984 |
+
'rmse': fitter.rmse
|
985 |
+
})
|
986 |
+
|
987 |
+
except Exception as e:
|
988 |
+
msgs.append(f"ERROR en '{sheet}': {e}")
|
989 |
+
traceback.print_exc()
|
990 |
+
|
991 |
+
msg = "Análisis completado." + ("\n" + "\n".join(msgs) if msgs else "")
|
992 |
+
df_res = pd.DataFrame(results_data).dropna(axis=1, how='all')
|
993 |
+
|
994 |
+
# Crear gráfico interactivo
|
995 |
+
fig = None
|
996 |
+
if models_results and reader.data_time is not None:
|
997 |
+
fig = create_interactive_plot(plot_config, models_results, component)
|
998 |
+
|
999 |
+
return fig, df_res, msg
|
1000 |
+
|
1001 |
# --- API ENDPOINTS PARA AGENTES DE IA ---
|
1002 |
|
1003 |
app = FastAPI(title="Bioprocess Kinetics API", version="2.0")
|
|
|
1012 |
models: List[str],
|
1013 |
options: Optional[Dict[str, Any]] = None
|
1014 |
):
|
1015 |
+
"""Endpoint para análisis de datos cinéticos"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1016 |
try:
|
1017 |
results = {}
|
1018 |
|
|
|
1098 |
lang = Language[lang_key]
|
1099 |
trans = TRANSLATIONS.get(lang, TRANSLATIONS[Language.ES])
|
1100 |
|
1101 |
+
return trans["title"], trans["subtitle"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1102 |
|
1103 |
# Obtener opciones de modelo
|
1104 |
MODEL_CHOICES = [(model.display_name, model.name) for model in AVAILABLE_MODELS.values()]
|
|
|
1235 |
api_docs_button = gr.Button("📖 Ver Documentación API")
|
1236 |
|
1237 |
download_file = gr.File(label="Archivo descargado")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1238 |
|
1239 |
+
# --- TAB 4: API ---
|
1240 |
+
with gr.TabItem("🔌 API"):
|
1241 |
+
gr.Markdown("""
|
1242 |
+
## Documentación de la API
|
1243 |
+
|
1244 |
+
La API REST permite integrar el análisis de cinéticas en aplicaciones externas
|
1245 |
+
y agentes de IA.
|
1246 |
+
|
1247 |
+
### Endpoints disponibles:
|
1248 |
+
|
1249 |
+
#### 1. `GET /api/models`
|
1250 |
+
Retorna la lista de modelos disponibles con su información.
|
1251 |
+
|
1252 |
+
```python
|
1253 |
+
import requests
|
1254 |
+
response = requests.get("http://localhost:8000/api/models")
|
1255 |
+
models = response.json()
|
1256 |
+
```
|
1257 |
+
|
1258 |
+
#### 2. `POST /api/analyze`
|
1259 |
+
Analiza datos con los modelos especificados.
|
1260 |
+
|
1261 |
+
```python
|
1262 |
+
data = {
|
1263 |
+
"data": {
|
1264 |
+
"time": [0, 1, 2, 3, 4],
|
1265 |
+
"biomass": [0.1, 0.3, 0.8, 1.5, 2.0],
|
1266 |
+
"substrate": [10, 8, 5, 2, 0.5]
|
1267 |
+
},
|
1268 |
+
"models": ["logistic", "gompertz"],
|
1269 |
+
"options": {"maxfev": 50000}
|
1270 |
+
}
|
1271 |
+
response = requests.post("http://localhost:8000/api/analyze", json=data)
|
1272 |
+
results = response.json()
|
1273 |
+
```
|
1274 |
+
|
1275 |
+
#### 3. `POST /api/predict`
|
1276 |
+
Predice valores usando un modelo y parámetros específicos.
|
1277 |
+
|
1278 |
+
```python
|
1279 |
+
data = {
|
1280 |
+
"model_name": "logistic",
|
1281 |
+
"parameters": {"X0": 0.1, "Xm": 10.0, "μm": 0.5},
|
1282 |
+
"time_points": [0, 1, 2, 3, 4, 5]
|
1283 |
+
}
|
1284 |
+
response = requests.post("http://localhost:8000/api/predict", json=data)
|
1285 |
+
predictions = response.json()
|
1286 |
+
```
|
1287 |
+
|
1288 |
+
### Iniciar servidor API:
|
1289 |
+
```bash
|
1290 |
+
uvicorn script_name:app --reload --port 8000
|
1291 |
+
```
|
1292 |
+
""")
|
1293 |
+
|
1294 |
+
# Botón para copiar comando
|
1295 |
+
gr.Textbox(
|
1296 |
+
value="uvicorn bioprocess_analyzer:app --reload --port 8000",
|
1297 |
+
label="Comando para iniciar API",
|
1298 |
+
interactive=False
|
1299 |
+
)
|
1300 |
|
1301 |
# --- EVENTOS ---
|
1302 |
|
1303 |
+
def run_analysis_wrapper(file, models, component, use_de, maxfev, exp_names, theme):
|
1304 |
"""Wrapper para ejecutar el análisis"""
|
1305 |
try:
|
1306 |
+
return run_analysis(file, models, component, use_de, maxfev, exp_names,
|
1307 |
+
'dark' if theme else 'light')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1308 |
except Exception as e:
|
1309 |
+
print(f"--- ERROR EN ANÁLISIS ---\n{traceback.format_exc()}")
|
1310 |
return None, pd.DataFrame(), f"Error: {str(e)}"
|
1311 |
|
1312 |
analyze_button.click(
|
|
|
1317 |
component_selector,
|
1318 |
use_de_input,
|
1319 |
maxfev_input,
|
1320 |
+
exp_names_input,
|
1321 |
+
theme_toggle
|
1322 |
],
|
1323 |
outputs=[plot_output, results_table, status_output]
|
1324 |
)
|
|
|
1327 |
language_select.change(
|
1328 |
fn=change_language,
|
1329 |
inputs=[language_select],
|
1330 |
+
outputs=[title_text, subtitle_text]
|
1331 |
)
|
1332 |
|
1333 |
# Cambio de tema
|
1334 |
def apply_theme(is_dark):
|
1335 |
+
return gr.Info("Tema cambiado. Los gráficos nuevos usarán el tema seleccionado.")
|
|
|
|
|
1336 |
|
1337 |
theme_toggle.change(
|
1338 |
fn=apply_theme,
|
1339 |
inputs=[theme_toggle],
|
1340 |
outputs=[]
|
1341 |
)
|
1342 |
+
|
1343 |
+
# Funciones de descarga
|
1344 |
+
def download_results_excel(df):
|
1345 |
+
if df is None or df.empty:
|
1346 |
+
gr.Warning("No hay datos para descargar")
|
1347 |
+
return None
|
1348 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".xlsx") as tmp:
|
1349 |
+
df.to_excel(tmp.name, index=False)
|
1350 |
+
return tmp.name
|
1351 |
+
|
1352 |
+
def download_results_json(df):
|
1353 |
+
if df is None or df.empty:
|
1354 |
+
gr.Warning("No hay datos para descargar")
|
1355 |
+
return None
|
1356 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".json") as tmp:
|
1357 |
+
df.to_json(tmp.name, orient='records', indent=2)
|
1358 |
+
return tmp.name
|
1359 |
+
|
1360 |
+
download_excel.click(
|
1361 |
+
fn=download_results_excel,
|
1362 |
+
inputs=[results_table],
|
1363 |
+
outputs=[download_file]
|
1364 |
+
)
|
1365 |
+
|
1366 |
+
download_json.click(
|
1367 |
+
fn=download_results_json,
|
1368 |
+
inputs=[results_table],
|
1369 |
+
outputs=[download_file]
|
1370 |
+
)
|
1371 |
|
1372 |
return demo
|
1373 |
|