Update app.py
Browse files
app.py
CHANGED
@@ -17,11 +17,13 @@ from unittest.mock import MagicMock
|
|
17 |
from dataclasses import dataclass
|
18 |
from enum import Enum
|
19 |
import json
|
|
|
20 |
|
21 |
from PIL import Image
|
22 |
import gradio as gr
|
23 |
import plotly.graph_objects as go
|
24 |
from plotly.subplots import make_subplots
|
|
|
25 |
import numpy as np
|
26 |
import pandas as pd
|
27 |
import matplotlib.pyplot as plt
|
@@ -68,7 +70,11 @@ TRANSLATIONS = {
|
|
68 |
"language": "Idioma",
|
69 |
"theory": "Teoría y Modelos",
|
70 |
"guide": "Guía de Uso",
|
71 |
-
"api_docs": "Documentación API"
|
|
|
|
|
|
|
|
|
72 |
},
|
73 |
Language.EN: {
|
74 |
"title": "🔬 Bioprocess Kinetics Analyzer",
|
@@ -91,7 +97,11 @@ TRANSLATIONS = {
|
|
91 |
"language": "Language",
|
92 |
"theory": "Theory and Models",
|
93 |
"guide": "User Guide",
|
94 |
-
"api_docs": "API Documentation"
|
|
|
|
|
|
|
|
|
95 |
},
|
96 |
}
|
97 |
|
@@ -100,9 +110,6 @@ C_TIME = 'tiempo'
|
|
100 |
C_BIOMASS = 'biomass'
|
101 |
C_SUBSTRATE = 'substrate'
|
102 |
C_PRODUCT = 'product'
|
103 |
-
C_OXYGEN = 'oxygen'
|
104 |
-
C_CO2 = 'co2'
|
105 |
-
C_PH = 'ph'
|
106 |
COMPONENTS = [C_BIOMASS, C_SUBSTRATE, C_PRODUCT]
|
107 |
|
108 |
# --- SISTEMA DE TEMAS ---
|
@@ -541,6 +548,7 @@ class BioprocessFitter:
|
|
541 |
self.data_time: Optional[np.ndarray] = None
|
542 |
self.data_means: Dict[str, Optional[np.ndarray]] = {c: None for c in COMPONENTS}
|
543 |
self.data_stds: Dict[str, Optional[np.ndarray]] = {c: None for c in COMPONENTS}
|
|
|
544 |
|
545 |
def _get_biomass_at_t(self, t: np.ndarray, p: List[float]) -> np.ndarray:
|
546 |
return self.model.model_function(t, *p)
|
@@ -579,20 +587,24 @@ class BioprocessFitter:
|
|
579 |
self.data_time = df[time_col].dropna().to_numpy()
|
580 |
min_len = len(self.data_time)
|
581 |
|
582 |
-
def extract(name: str) -> Tuple[np.ndarray, np.ndarray]:
|
583 |
cols = [c for c in df.columns if c[1].strip().lower() == name.lower()]
|
584 |
-
if not cols: return np.array([]), np.array([])
|
585 |
reps = [df[c].dropna().values[:min_len] for c in cols]
|
586 |
reps = [r for r in reps if len(r) == min_len]
|
587 |
-
if not reps: return np.array([]), np.array([])
|
588 |
arr = np.array(reps)
|
589 |
mean = np.mean(arr, axis=0)
|
590 |
std = np.std(arr, axis=0, ddof=1) if arr.shape[0] > 1 else np.zeros_like(mean)
|
591 |
-
return mean, std
|
592 |
|
593 |
-
|
594 |
-
|
595 |
-
|
|
|
|
|
|
|
|
|
596 |
except (IndexError, KeyError) as e:
|
597 |
raise ValueError(f"Estructura de DataFrame inválida. Error: {e}")
|
598 |
|
@@ -745,6 +757,90 @@ class BioprocessFitter:
|
|
745 |
if self.params[C_PRODUCT]:
|
746 |
P = self.product(t_fine, *list(self.params[C_PRODUCT].values()), bio_p)
|
747 |
return X, S, P
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
748 |
|
749 |
# --- FUNCIONES AUXILIARES ---
|
750 |
|
@@ -763,235 +859,456 @@ def format_number(value: Any, decimals: int) -> str:
|
|
763 |
|
764 |
return str(round(value, decimals))
|
765 |
|
766 |
-
# --- FUNCIONES DE PLOTEO MEJORADAS
|
767 |
|
768 |
-
def
|
769 |
-
|
770 |
-
"""Crea un gráfico interactivo mejorado con Plotly"""
|
771 |
time_exp = plot_config['time_exp']
|
772 |
-
time_fine =
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
|
780 |
-
|
781 |
-
|
782 |
-
|
783 |
-
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
798 |
if data_exp is not None:
|
799 |
-
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
|
804 |
-
|
805 |
-
trace = go.Scatter(
|
806 |
-
x=time_exp,
|
807 |
-
y=data_exp,
|
808 |
-
mode='markers',
|
809 |
-
name=f'{comp.capitalize()} (Experimental)',
|
810 |
-
marker=dict(size=10, symbol='circle'),
|
811 |
-
error_y=error_y,
|
812 |
-
legendgroup=comp,
|
813 |
-
showlegend=True
|
814 |
-
)
|
815 |
-
|
816 |
-
if selected_component == "all":
|
817 |
-
fig.add_trace(trace, row=row, col=1)
|
818 |
else:
|
819 |
-
|
820 |
-
|
821 |
-
|
|
|
|
|
822 |
for i, res in enumerate(models_results):
|
823 |
-
|
824 |
-
|
825 |
-
|
826 |
-
for
|
827 |
-
if res.get(
|
828 |
-
|
829 |
-
|
830 |
-
|
831 |
-
|
832 |
-
|
833 |
-
|
834 |
-
|
835 |
-
|
836 |
-
|
837 |
-
|
838 |
-
|
839 |
-
|
840 |
-
|
841 |
-
|
842 |
-
|
843 |
-
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
|
858 |
-
|
859 |
-
)
|
860 |
-
|
861 |
-
|
862 |
-
|
863 |
-
|
864 |
-
|
865 |
-
|
866 |
-
|
867 |
-
|
868 |
-
|
869 |
-
|
870 |
-
|
871 |
-
|
872 |
-
|
873 |
-
}
|
874 |
-
|
875 |
-
|
876 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
877 |
fig.update_layout(
|
878 |
-
|
879 |
-
|
880 |
-
|
881 |
-
|
882 |
-
|
883 |
-
dict(
|
884 |
-
|
885 |
-
|
886 |
-
|
887 |
-
|
888 |
-
|
889 |
-
|
890 |
-
method="update",
|
891 |
-
args=[{"visible": [len(fig.data)//3 <= i < 2*len(fig.data)//3 for i in range(len(fig.data))]}]),
|
892 |
-
dict(label="Solo Producto",
|
893 |
-
method="update",
|
894 |
-
args=[{"visible": [i >= 2*len(fig.data)//3 for i in range(len(fig.data))]}]),
|
895 |
-
],
|
896 |
-
x=0.1,
|
897 |
-
y=1.15,
|
898 |
-
xanchor="left",
|
899 |
-
yanchor="top"
|
900 |
-
)
|
901 |
-
]
|
902 |
)
|
903 |
-
|
904 |
return fig
|
905 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
906 |
# --- FUNCIÓN PRINCIPAL DE ANÁLISIS ---
|
907 |
-
|
908 |
-
|
909 |
-
|
|
|
|
|
|
|
|
|
910 |
|
911 |
-
try:
|
912 |
xls = pd.ExcelFile(file.name)
|
913 |
-
except Exception as e:
|
914 |
-
return
|
915 |
|
916 |
-
|
917 |
-
|
|
|
918 |
|
919 |
-
exp_list = [n.strip() for n in exp_names.split('\n') if n.strip()]
|
920 |
|
921 |
for i, sheet in enumerate(xls.sheet_names):
|
922 |
exp_name = exp_list[i] if i < len(exp_list) else f"Hoja '{sheet}'"
|
|
|
923 |
try:
|
924 |
df = pd.read_excel(xls, sheet_name=sheet, header=[0,1])
|
925 |
reader = BioprocessFitter(list(AVAILABLE_MODELS.values())[0])
|
926 |
reader.process_data_from_df(df)
|
927 |
|
928 |
-
if reader.data_time is None:
|
929 |
msgs.append(f"WARN: Sin datos de tiempo en '{sheet}'.")
|
930 |
continue
|
|
|
|
|
|
|
931 |
|
932 |
-
|
933 |
-
'
|
934 |
-
'
|
935 |
-
'theme': theme
|
936 |
-
}
|
937 |
-
|
938 |
-
for c in COMPONENTS:
|
939 |
-
plot_config[f'{c}_exp'] = reader.data_means[c]
|
940 |
-
plot_config[f'{c}_std'] = reader.data_stds[c]
|
941 |
|
942 |
t_fine = reader._generate_fine_time_grid(reader.data_time)
|
|
|
943 |
|
944 |
for m_name in model_names:
|
945 |
-
if m_name not in AVAILABLE_MODELS:
|
946 |
msgs.append(f"WARN: Modelo '{m_name}' no disponible.")
|
947 |
continue
|
948 |
|
949 |
-
fitter = BioprocessFitter(
|
950 |
-
AVAILABLE_MODELS[m_name],
|
951 |
-
maxfev=int(maxfev),
|
952 |
-
use_differential_evolution=use_de
|
953 |
-
)
|
954 |
fitter.data_time = reader.data_time
|
955 |
fitter.data_means = reader.data_means
|
956 |
fitter.data_stds = reader.data_stds
|
|
|
957 |
fitter.fit_all_models()
|
958 |
|
|
|
959 |
row = {'Experimento': exp_name, 'Modelo': fitter.model.display_name}
|
960 |
for c in COMPONENTS:
|
961 |
-
if fitter.params[c]:
|
962 |
row.update({f'{c.capitalize()}_{k}': v for k, v in fitter.params[c].items()})
|
963 |
row[f'R2_{c.capitalize()}'] = fitter.r2.get(c)
|
964 |
row[f'RMSE_{c.capitalize()}'] = fitter.rmse.get(c)
|
965 |
row[f'MAE_{c.capitalize()}'] = fitter.mae.get(c)
|
966 |
row[f'AIC_{c.capitalize()}'] = fitter.aic.get(c)
|
967 |
row[f'BIC_{c.capitalize()}'] = fitter.bic.get(c)
|
968 |
-
|
969 |
results_data.append(row)
|
970 |
|
971 |
-
|
972 |
-
|
973 |
-
'
|
974 |
-
|
975 |
-
|
976 |
-
|
977 |
-
|
978 |
-
|
979 |
-
|
980 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
981 |
|
982 |
-
except Exception as e:
|
983 |
msgs.append(f"ERROR en '{sheet}': {e}")
|
984 |
traceback.print_exc()
|
985 |
|
986 |
msg = "Análisis completado." + ("\n" + "\n".join(msgs) if msgs else "")
|
987 |
df_res = pd.DataFrame(results_data).dropna(axis=1, how='all')
|
988 |
|
989 |
-
|
990 |
-
|
991 |
-
|
992 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
993 |
|
994 |
-
return
|
995 |
|
996 |
# --- API ENDPOINTS PARA AGENTES DE IA ---
|
997 |
|
@@ -1083,16 +1400,15 @@ async def predict_kinetics(
|
|
1083 |
except Exception as e:
|
1084 |
return {"status": "error", "message": str(e)}
|
1085 |
|
1086 |
-
# --- INTERFAZ GRADIO
|
1087 |
|
1088 |
def create_gradio_interface() -> gr.Blocks:
|
1089 |
-
"""Crea la interfaz
|
1090 |
|
1091 |
def change_language(lang_key: str) -> Dict:
|
1092 |
"""Cambia el idioma de la interfaz"""
|
1093 |
lang = Language[lang_key]
|
1094 |
trans = TRANSLATIONS.get(lang, TRANSLATIONS[Language.ES])
|
1095 |
-
|
1096 |
return trans["title"], trans["subtitle"]
|
1097 |
|
1098 |
# Obtener opciones de modelo
|
@@ -1126,196 +1442,304 @@ def create_gradio_interface() -> gr.Blocks:
|
|
1126 |
)
|
1127 |
|
1128 |
with gr.Tabs() as tabs:
|
1129 |
-
# --- TAB 1:
|
1130 |
-
with gr.TabItem("
|
1131 |
-
gr.
|
1132 |
-
|
1133 |
-
|
1134 |
-
|
1135 |
-
|
1136 |
-
|
1137 |
-
|
1138 |
-
|
1139 |
-
|
1140 |
-
|
1141 |
-
|
1142 |
-
|
1143 |
-
|
1144 |
-
|
1145 |
-
|
1146 |
-
|
1147 |
-
|
1148 |
-
|
1149 |
-
|
1150 |
-
|
1151 |
-
|
1152 |
-
|
1153 |
-
|
1154 |
-
|
1155 |
-
|
1156 |
-
|
1157 |
-
|
1158 |
-
|
1159 |
-
|
1160 |
-
|
1161 |
-
|
1162 |
-
|
1163 |
-
|
|
|
1164 |
|
1165 |
-
# --- TAB 2:
|
1166 |
-
with gr.TabItem("
|
1167 |
with gr.Row():
|
1168 |
with gr.Column(scale=1):
|
1169 |
-
file_input = gr.File(
|
1170 |
-
label="📁 Sube tu archivo Excel (.xlsx)",
|
1171 |
-
file_types=['.xlsx']
|
1172 |
-
)
|
1173 |
-
|
1174 |
exp_names_input = gr.Textbox(
|
1175 |
-
label="
|
1176 |
-
placeholder="
|
1177 |
-
lines=3
|
|
|
1178 |
)
|
1179 |
-
|
1180 |
model_selection_input = gr.CheckboxGroup(
|
1181 |
choices=MODEL_CHOICES,
|
1182 |
-
label="
|
1183 |
value=DEFAULT_MODELS
|
1184 |
)
|
1185 |
-
|
1186 |
-
|
1187 |
-
|
1188 |
-
|
1189 |
-
|
1190 |
-
|
1191 |
-
|
1192 |
-
|
1193 |
-
|
1194 |
-
|
1195 |
-
|
1196 |
-
)
|
1197 |
|
1198 |
with gr.Column(scale=2):
|
1199 |
-
|
1200 |
-
|
1201 |
-
|
1202 |
-
|
1203 |
-
|
1204 |
-
|
1205 |
-
|
1206 |
-
|
1207 |
-
|
1208 |
-
|
1209 |
-
|
|
|
|
|
|
|
1210 |
|
1211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1212 |
|
1213 |
-
|
1214 |
-
|
|
|
|
|
|
|
|
|
|
|
1215 |
# --- TAB 3: RESULTADOS ---
|
1216 |
-
with gr.TabItem("
|
1217 |
-
status_output = gr.Textbox(
|
1218 |
-
|
1219 |
-
|
1220 |
-
|
1221 |
-
|
1222 |
-
|
1223 |
-
|
1224 |
-
wrap=True
|
1225 |
)
|
1226 |
|
1227 |
-
with gr.
|
1228 |
-
|
1229 |
-
|
1230 |
-
|
1231 |
-
|
1232 |
-
|
1233 |
-
|
1234 |
-
# --- TAB 4: API ---
|
1235 |
-
with gr.TabItem("🔌 API"):
|
1236 |
-
gr.Markdown("""
|
1237 |
-
## Documentación de la API
|
1238 |
-
|
1239 |
-
La API REST permite integrar el análisis de cinéticas en aplicaciones externas
|
1240 |
-
y agentes de IA.
|
1241 |
-
|
1242 |
-
### Endpoints disponibles:
|
1243 |
-
|
1244 |
-
#### 1. `GET /api/models`
|
1245 |
-
Retorna la lista de modelos disponibles con su información.
|
1246 |
|
1247 |
-
|
1248 |
-
|
1249 |
-
response = requests.get("http://localhost:8000/api/models")
|
1250 |
-
models = response.json()
|
1251 |
-
```
|
1252 |
|
1253 |
-
|
1254 |
-
|
|
|
|
|
1255 |
|
1256 |
-
|
1257 |
-
|
1258 |
-
|
1259 |
-
|
1260 |
-
|
1261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1262 |
},
|
1263 |
-
|
1264 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1265 |
}
|
1266 |
-
response = requests.post("http://localhost:8000/api/analyze", json=data)
|
1267 |
-
results = response.json()
|
1268 |
-
```
|
1269 |
|
1270 |
-
|
1271 |
-
Predice valores usando un modelo y parámetros específicos.
|
1272 |
|
1273 |
-
|
1274 |
-
|
1275 |
-
|
1276 |
-
|
1277 |
-
|
1278 |
-
|
1279 |
-
|
1280 |
-
|
1281 |
-
|
|
|
|
|
1282 |
|
1283 |
-
|
1284 |
-
```bash
|
1285 |
-
uvicorn script_name:app --reload --port 8000
|
1286 |
-
```
|
1287 |
-
""")
|
1288 |
|
1289 |
-
|
1290 |
-
|
1291 |
-
|
1292 |
-
|
1293 |
-
|
1294 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1295 |
|
1296 |
-
|
1297 |
|
1298 |
-
|
1299 |
-
"""Wrapper para ejecutar el análisis"""
|
1300 |
-
try:
|
1301 |
-
return run_analysis(file, models, component, use_de, maxfev, exp_names,
|
1302 |
-
'dark' if theme else 'light')
|
1303 |
-
except Exception as e:
|
1304 |
-
print(f"--- ERROR EN ANÁLISIS ---\n{traceback.format_exc()}")
|
1305 |
-
return None, pd.DataFrame(), f"Error: {str(e)}"
|
1306 |
|
1307 |
-
|
1308 |
-
|
1309 |
-
|
1310 |
-
|
1311 |
-
|
1312 |
-
|
1313 |
-
|
1314 |
-
|
1315 |
-
|
1316 |
-
|
1317 |
-
]
|
1318 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1319 |
)
|
1320 |
|
1321 |
# Cambio de idioma
|
@@ -1327,46 +1751,17 @@ def create_gradio_interface() -> gr.Blocks:
|
|
1327 |
|
1328 |
# Cambio de tema
|
1329 |
def apply_theme(is_dark):
|
1330 |
-
return gr.Info("Tema cambiado. Los gráficos
|
1331 |
|
1332 |
theme_toggle.change(
|
1333 |
fn=apply_theme,
|
1334 |
inputs=[theme_toggle],
|
1335 |
outputs=[]
|
1336 |
)
|
1337 |
-
|
1338 |
-
# Funciones de descarga
|
1339 |
-
def download_results_excel(df):
|
1340 |
-
if df is None or df.empty:
|
1341 |
-
gr.Warning("No hay datos para descargar")
|
1342 |
-
return None
|
1343 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".xlsx") as tmp:
|
1344 |
-
df.to_excel(tmp.name, index=False)
|
1345 |
-
return tmp.name
|
1346 |
-
|
1347 |
-
def download_results_json(df):
|
1348 |
-
if df is None or df.empty:
|
1349 |
-
gr.Warning("No hay datos para descargar")
|
1350 |
-
return None
|
1351 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".json") as tmp:
|
1352 |
-
df.to_json(tmp.name, orient='records', indent=2)
|
1353 |
-
return tmp.name
|
1354 |
-
|
1355 |
-
download_excel.click(
|
1356 |
-
fn=download_results_excel,
|
1357 |
-
inputs=[results_table],
|
1358 |
-
outputs=[download_file]
|
1359 |
-
)
|
1360 |
-
|
1361 |
-
download_json.click(
|
1362 |
-
fn=download_results_json,
|
1363 |
-
inputs=[results_table],
|
1364 |
-
outputs=[download_file]
|
1365 |
-
)
|
1366 |
|
1367 |
return demo
|
1368 |
|
1369 |
-
# --- PUNTO DE ENTRADA ---
|
1370 |
|
1371 |
if __name__ == '__main__':
|
1372 |
# Lanzar aplicación Gradio
|
|
|
17 |
from dataclasses import dataclass
|
18 |
from enum import Enum
|
19 |
import json
|
20 |
+
import base64
|
21 |
|
22 |
from PIL import Image
|
23 |
import gradio as gr
|
24 |
import plotly.graph_objects as go
|
25 |
from plotly.subplots import make_subplots
|
26 |
+
import plotly.io as pio
|
27 |
import numpy as np
|
28 |
import pandas as pd
|
29 |
import matplotlib.pyplot as plt
|
|
|
70 |
"language": "Idioma",
|
71 |
"theory": "Teoría y Modelos",
|
72 |
"guide": "Guía de Uso",
|
73 |
+
"api_docs": "Documentación API",
|
74 |
+
"individual": "Individual",
|
75 |
+
"average": "Promedio",
|
76 |
+
"combined": "Combinado",
|
77 |
+
"config": "Configuración"
|
78 |
},
|
79 |
Language.EN: {
|
80 |
"title": "🔬 Bioprocess Kinetics Analyzer",
|
|
|
97 |
"language": "Language",
|
98 |
"theory": "Theory and Models",
|
99 |
"guide": "User Guide",
|
100 |
+
"api_docs": "API Documentation",
|
101 |
+
"individual": "Individual",
|
102 |
+
"average": "Average",
|
103 |
+
"combined": "Combined",
|
104 |
+
"config": "Configuration"
|
105 |
},
|
106 |
}
|
107 |
|
|
|
110 |
C_BIOMASS = 'biomass'
|
111 |
C_SUBSTRATE = 'substrate'
|
112 |
C_PRODUCT = 'product'
|
|
|
|
|
|
|
113 |
COMPONENTS = [C_BIOMASS, C_SUBSTRATE, C_PRODUCT]
|
114 |
|
115 |
# --- SISTEMA DE TEMAS ---
|
|
|
548 |
self.data_time: Optional[np.ndarray] = None
|
549 |
self.data_means: Dict[str, Optional[np.ndarray]] = {c: None for c in COMPONENTS}
|
550 |
self.data_stds: Dict[str, Optional[np.ndarray]] = {c: None for c in COMPONENTS}
|
551 |
+
self.raw_data: Dict[str, List[np.ndarray]] = {c: [] for c in COMPONENTS} # Para análisis individual
|
552 |
|
553 |
def _get_biomass_at_t(self, t: np.ndarray, p: List[float]) -> np.ndarray:
|
554 |
return self.model.model_function(t, *p)
|
|
|
587 |
self.data_time = df[time_col].dropna().to_numpy()
|
588 |
min_len = len(self.data_time)
|
589 |
|
590 |
+
def extract(name: str) -> Tuple[np.ndarray, np.ndarray, List[np.ndarray]]:
|
591 |
cols = [c for c in df.columns if c[1].strip().lower() == name.lower()]
|
592 |
+
if not cols: return np.array([]), np.array([]), []
|
593 |
reps = [df[c].dropna().values[:min_len] for c in cols]
|
594 |
reps = [r for r in reps if len(r) == min_len]
|
595 |
+
if not reps: return np.array([]), np.array([]), []
|
596 |
arr = np.array(reps)
|
597 |
mean = np.mean(arr, axis=0)
|
598 |
std = np.std(arr, axis=0, ddof=1) if arr.shape[0] > 1 else np.zeros_like(mean)
|
599 |
+
return mean, std, reps
|
600 |
|
601 |
+
# Extraer datos con réplicas individuales
|
602 |
+
for comp, name in [(C_BIOMASS, 'Biomasa'), (C_SUBSTRATE, 'Sustrato'), (C_PRODUCT, 'Producto')]:
|
603 |
+
mean, std, reps = extract(name)
|
604 |
+
self.data_means[comp] = mean
|
605 |
+
self.data_stds[comp] = std
|
606 |
+
self.raw_data[comp] = reps
|
607 |
+
|
608 |
except (IndexError, KeyError) as e:
|
609 |
raise ValueError(f"Estructura de DataFrame inválida. Error: {e}")
|
610 |
|
|
|
757 |
if self.params[C_PRODUCT]:
|
758 |
P = self.product(t_fine, *list(self.params[C_PRODUCT].values()), bio_p)
|
759 |
return X, S, P
|
760 |
+
|
761 |
+
def plot_individual_or_combined(self, cfg, mode):
|
762 |
+
"""Crea gráficos individuales o combinados con Matplotlib/Seaborn"""
|
763 |
+
t_exp, t_fine = cfg['time_exp'], self._generate_fine_time_grid(cfg['time_exp'])
|
764 |
+
X_m, S_m, P_m = self.get_model_curves_for_plot(t_fine, cfg.get('use_differential', False))
|
765 |
+
|
766 |
+
sns.set_style(cfg.get('style', 'whitegrid'))
|
767 |
+
|
768 |
+
if mode == 'average':
|
769 |
+
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(10, 15), sharex=True)
|
770 |
+
fig.suptitle(f"Análisis: {cfg.get('exp_name', '')} ({self.model.display_name})", fontsize=16)
|
771 |
+
axes = [ax1, ax2, ax3]
|
772 |
+
else:
|
773 |
+
fig, ax1 = plt.subplots(figsize=(12, 8))
|
774 |
+
fig.suptitle(f"Análisis: {cfg.get('exp_name', '')} ({self.model.display_name})", fontsize=16)
|
775 |
+
ax2 = ax1.twinx()
|
776 |
+
ax3 = ax1.twinx()
|
777 |
+
ax3.spines["right"].set_position(("axes", 1.18))
|
778 |
+
axes = [ax1, ax2, ax3]
|
779 |
+
|
780 |
+
data_map = {C_BIOMASS: X_m, C_SUBSTRATE: S_m, C_PRODUCT: P_m}
|
781 |
+
comb_styles = {
|
782 |
+
C_BIOMASS: {'c': '#0072B2', 'mc': '#56B4E9', 'm': 'o', 'ls': '-'},
|
783 |
+
C_SUBSTRATE: {'c': '#009E73', 'mc': '#34E499', 'm': 's', 'ls': '--'},
|
784 |
+
C_PRODUCT: {'c': '#D55E00', 'mc': '#F0E442', 'm': '^', 'ls': '-.'}
|
785 |
+
}
|
786 |
+
|
787 |
+
for ax, comp in zip(axes, COMPONENTS):
|
788 |
+
ylabel = cfg.get('axis_labels', {}).get(f'{comp}_label', comp.capitalize())
|
789 |
+
data = cfg.get(f'{comp}_exp')
|
790 |
+
std = cfg.get(f'{comp}_std')
|
791 |
+
model_data = data_map.get(comp)
|
792 |
+
|
793 |
+
if mode == 'combined':
|
794 |
+
s = comb_styles[comp]
|
795 |
+
pc, lc, ms, ls = s['c'], s['mc'], s['m'], s['ls']
|
796 |
+
else:
|
797 |
+
pc = cfg.get(f'{comp}_point_color')
|
798 |
+
lc = cfg.get(f'{comp}_line_color')
|
799 |
+
ms = cfg.get(f'{comp}_marker_style')
|
800 |
+
ls = cfg.get(f'{comp}_line_style')
|
801 |
+
|
802 |
+
ax_c = pc if mode == 'combined' else 'black'
|
803 |
+
ax.set_ylabel(ylabel, color=ax_c)
|
804 |
+
ax.tick_params(axis='y', labelcolor=ax_c)
|
805 |
+
|
806 |
+
if data is not None and len(data) > 0:
|
807 |
+
if cfg.get('show_error_bars') and std is not None and np.any(std > 0):
|
808 |
+
ax.errorbar(t_exp, data, yerr=std, fmt=ms, color=pc,
|
809 |
+
label=f'{comp.capitalize()} (Datos)',
|
810 |
+
capsize=cfg.get('error_cap_size', 3),
|
811 |
+
elinewidth=cfg.get('error_line_width', 1))
|
812 |
+
else:
|
813 |
+
ax.plot(t_exp, data, ls='', marker=ms, color=pc,
|
814 |
+
label=f'{comp.capitalize()} (Datos)')
|
815 |
+
|
816 |
+
if model_data is not None and len(model_data) > 0:
|
817 |
+
ax.plot(t_fine, model_data, ls=ls, color=lc,
|
818 |
+
label=f'{comp.capitalize()} (Modelo)')
|
819 |
+
|
820 |
+
if mode == 'average' and cfg.get('show_legend', True):
|
821 |
+
ax.legend(loc=cfg.get('legend_pos', 'best'))
|
822 |
+
|
823 |
+
if mode == 'average' and cfg.get('show_params', True) and self.params[comp]:
|
824 |
+
decs = cfg.get('decimal_places', 3)
|
825 |
+
p_txt = '\n'.join([f"{k}={format_number(v, decs)}" for k, v in self.params[comp].items()])
|
826 |
+
full_txt = f"{p_txt}\nR²={format_number(self.r2.get(comp, 0), 3)}, RMSE={format_number(self.rmse.get(comp, 0), 3)}"
|
827 |
+
pos_x, ha = (0.95, 'right') if 'right' in cfg.get('params_pos', 'upper right') else (0.05, 'left')
|
828 |
+
ax.text(pos_x, 0.95, full_txt, transform=ax.transAxes, va='top', ha=ha,
|
829 |
+
bbox=dict(boxstyle='round,pad=0.4', fc='wheat', alpha=0.7))
|
830 |
+
|
831 |
+
if mode == 'combined' and cfg.get('show_legend', True):
|
832 |
+
h1, l1 = axes[0].get_legend_handles_labels()
|
833 |
+
h2, l2 = axes[1].get_legend_handles_labels()
|
834 |
+
h3, l3 = axes[2].get_legend_handles_labels()
|
835 |
+
axes[0].legend(handles=h1+h2+h3, labels=l1+l2+l3, loc=cfg.get('legend_pos', 'best'))
|
836 |
+
|
837 |
+
axes[-1].set_xlabel(cfg.get('axis_labels', {}).get('x_label', 'Tiempo'))
|
838 |
+
plt.tight_layout()
|
839 |
+
|
840 |
+
if mode == 'combined':
|
841 |
+
fig.subplots_adjust(right=0.8)
|
842 |
+
|
843 |
+
return fig
|
844 |
|
845 |
# --- FUNCIONES AUXILIARES ---
|
846 |
|
|
|
859 |
|
860 |
return str(round(value, decimals))
|
861 |
|
862 |
+
# --- FUNCIONES DE PLOTEO MEJORADAS ---
|
863 |
|
864 |
+
def plot_model_comparison_matplotlib(plot_config: Dict, models_results: List[Dict]) -> plt.Figure:
|
865 |
+
"""Crea un gráfico de comparación de modelos estático usando Matplotlib/Seaborn"""
|
|
|
866 |
time_exp = plot_config['time_exp']
|
867 |
+
time_fine = BioprocessFitter(list(AVAILABLE_MODELS.values())[0])._generate_fine_time_grid(time_exp)
|
868 |
+
num_models = len(models_results)
|
869 |
+
|
870 |
+
palettes = {
|
871 |
+
C_BIOMASS: sns.color_palette("Blues", num_models),
|
872 |
+
C_SUBSTRATE: sns.color_palette("Greens", num_models),
|
873 |
+
C_PRODUCT: sns.color_palette("Reds", num_models)
|
874 |
+
}
|
875 |
+
line_styles = ['-', '--', '-.', ':']
|
876 |
+
|
877 |
+
sns.set_style(plot_config.get('style', 'whitegrid'))
|
878 |
+
fig, ax1 = plt.subplots(figsize=(12, 8))
|
879 |
+
|
880 |
+
# Configuración de los 3 ejes Y
|
881 |
+
ax1.set_xlabel(plot_config['axis_labels']['x_label'])
|
882 |
+
ax1.set_ylabel(plot_config['axis_labels']['biomass_label'], color="navy", fontsize=12)
|
883 |
+
ax1.tick_params(axis='y', labelcolor="navy")
|
884 |
+
ax2 = ax1.twinx()
|
885 |
+
ax3 = ax1.twinx()
|
886 |
+
ax3.spines["right"].set_position(("axes", 1.22))
|
887 |
+
ax2.set_ylabel(plot_config['axis_labels']['substrate_label'], color="darkgreen", fontsize=12)
|
888 |
+
ax2.tick_params(axis='y', labelcolor="darkgreen")
|
889 |
+
ax3.set_ylabel(plot_config['axis_labels']['product_label'], color="darkred", fontsize=12)
|
890 |
+
ax3.tick_params(axis='y', labelcolor="darkred")
|
891 |
+
|
892 |
+
# Dibujar datos experimentales
|
893 |
+
data_markers = {C_BIOMASS: 'o', C_SUBSTRATE: 's', C_PRODUCT: '^'}
|
894 |
+
for ax, key, color, face in [(ax1, C_BIOMASS, 'navy', 'skyblue'),
|
895 |
+
(ax2, C_SUBSTRATE, 'darkgreen', 'lightgreen'),
|
896 |
+
(ax3, C_PRODUCT, 'darkred', 'lightcoral')]:
|
897 |
+
data_exp = plot_config.get(f'{key}_exp')
|
898 |
+
data_std = plot_config.get(f'{key}_std')
|
899 |
if data_exp is not None:
|
900 |
+
if plot_config.get('show_error_bars') and data_std is not None and np.any(data_std > 0):
|
901 |
+
ax.errorbar(time_exp, data_exp, yerr=data_std, fmt=data_markers[key],
|
902 |
+
color=color, label=f'{key.capitalize()} (Datos)', zorder=10,
|
903 |
+
markersize=8, markerfacecolor=face, markeredgecolor=color,
|
904 |
+
capsize=plot_config.get('error_cap_size', 3),
|
905 |
+
elinewidth=plot_config.get('error_line_width', 1))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
906 |
else:
|
907 |
+
ax.plot(time_exp, data_exp, ls='', marker=data_markers[key],
|
908 |
+
label=f'{key.capitalize()} (Datos)', zorder=10, ms=8,
|
909 |
+
mfc=face, mec=color, mew=1.5)
|
910 |
+
|
911 |
+
# Dibujar curvas de los modelos
|
912 |
for i, res in enumerate(models_results):
|
913 |
+
ls = line_styles[i % len(line_styles)]
|
914 |
+
model_info = AVAILABLE_MODELS.get(res["name"], MagicMock(display_name=res["name"]))
|
915 |
+
model_display_name = model_info.display_name
|
916 |
+
for key_short, ax, name_long in [('X', ax1, C_BIOMASS), ('S', ax2, C_SUBSTRATE), ('P', ax3, C_PRODUCT)]:
|
917 |
+
if res.get(key_short) is not None:
|
918 |
+
ax.plot(time_fine, res[key_short], color=palettes[name_long][i], ls=ls,
|
919 |
+
label=f'{name_long.capitalize()} ({model_display_name})', alpha=0.9)
|
920 |
+
|
921 |
+
fig.subplots_adjust(left=0.3, right=0.78, top=0.92,
|
922 |
+
bottom=0.35 if plot_config.get('show_params') else 0.1)
|
923 |
+
|
924 |
+
if plot_config.get('show_legend'):
|
925 |
+
h1, l1 = ax1.get_legend_handles_labels()
|
926 |
+
h2, l2 = ax2.get_legend_handles_labels()
|
927 |
+
h3, l3 = ax3.get_legend_handles_labels()
|
928 |
+
fig.legend(h1 + h2 + h3, l1 + l2 + l3, loc='center left',
|
929 |
+
bbox_to_anchor=(0.0, 0.5), fancybox=True, shadow=True, fontsize='small')
|
930 |
+
|
931 |
+
if plot_config.get('show_params'):
|
932 |
+
total_width = 0.95
|
933 |
+
box_width = total_width / num_models
|
934 |
+
start_pos = (1.0 - total_width) / 2
|
935 |
+
for i, res in enumerate(models_results):
|
936 |
+
model_info = AVAILABLE_MODELS.get(res["name"], MagicMock(display_name=res["name"]))
|
937 |
+
text = f"**{model_info.display_name}**\n" + _generate_model_param_text(res, plot_config.get('decimal_places', 3))
|
938 |
+
fig.text(start_pos + i * box_width, 0.01, text, transform=fig.transFigure,
|
939 |
+
fontsize=7.5, va='bottom', ha='left',
|
940 |
+
bbox=dict(boxstyle='round,pad=0.4', fc='ivory', ec='gray', alpha=0.9))
|
941 |
+
|
942 |
+
fig.suptitle(f"Comparación de Modelos: {plot_config.get('exp_name', '')}", fontsize=16)
|
943 |
+
return fig
|
944 |
+
|
945 |
+
def plot_model_comparison_plotly(plot_config: Dict, models_results: List[Dict]) -> go.Figure:
|
946 |
+
"""Crea un gráfico de comparación de modelos interactivo usando Plotly"""
|
947 |
+
fig = go.Figure()
|
948 |
+
time_exp = plot_config['time_exp']
|
949 |
+
time_fine = BioprocessFitter(list(AVAILABLE_MODELS.values())[0])._generate_fine_time_grid(time_exp)
|
950 |
+
num_models = len(models_results)
|
951 |
+
|
952 |
+
palettes = {
|
953 |
+
C_BIOMASS: sns.color_palette("Blues", n_colors=num_models).as_hex(),
|
954 |
+
C_SUBSTRATE: sns.color_palette("Greens", n_colors=num_models).as_hex(),
|
955 |
+
C_PRODUCT: sns.color_palette("Reds", n_colors=num_models).as_hex()
|
956 |
+
}
|
957 |
+
line_styles = ['solid', 'dash', 'dot', 'dashdot']
|
958 |
+
data_markers = {C_BIOMASS: 'circle-open', C_SUBSTRATE: 'square-open', C_PRODUCT: 'diamond-open'}
|
959 |
+
|
960 |
+
for key, y_axis, color in [(C_BIOMASS, 'y1', 'navy'),
|
961 |
+
(C_SUBSTRATE, 'y2', 'darkgreen'),
|
962 |
+
(C_PRODUCT, 'y3', 'darkred')]:
|
963 |
+
data_exp = plot_config.get(f'{key}_exp')
|
964 |
+
data_std = plot_config.get(f'{key}_std')
|
965 |
+
if data_exp is not None:
|
966 |
+
error_y_config = dict(type='data', array=data_std, visible=True) if plot_config.get('show_error_bars') and data_std is not None and np.any(data_std > 0) else None
|
967 |
+
fig.add_trace(go.Scatter(
|
968 |
+
x=time_exp, y=data_exp, mode='markers',
|
969 |
+
name=f'{key.capitalize()} (Datos)',
|
970 |
+
marker=dict(color=color, size=10, symbol=data_markers[key], line=dict(width=2)),
|
971 |
+
error_y=error_y_config, yaxis=y_axis, legendgroup="data"))
|
972 |
+
|
973 |
+
for i, res in enumerate(models_results):
|
974 |
+
ls = line_styles[i % len(line_styles)]
|
975 |
+
model_display_name = AVAILABLE_MODELS.get(res["name"], MagicMock(display_name=res["name"])).display_name
|
976 |
+
if res.get('X') is not None:
|
977 |
+
fig.add_trace(go.Scatter(x=time_fine, y=res['X'], mode='lines',
|
978 |
+
name=f'Biomasa ({model_display_name})',
|
979 |
+
line=dict(color=palettes[C_BIOMASS][i], dash=ls),
|
980 |
+
legendgroup=res["name"]))
|
981 |
+
if res.get('S') is not None:
|
982 |
+
fig.add_trace(go.Scatter(x=time_fine, y=res['S'], mode='lines',
|
983 |
+
name=f'Sustrato ({model_display_name})',
|
984 |
+
line=dict(color=palettes[C_SUBSTRATE][i], dash=ls),
|
985 |
+
yaxis='y2', legendgroup=res["name"]))
|
986 |
+
if res.get('P') is not None:
|
987 |
+
fig.add_trace(go.Scatter(x=time_fine, y=res['P'], mode='lines',
|
988 |
+
name=f'Producto ({model_display_name})',
|
989 |
+
line=dict(color=palettes[C_PRODUCT][i], dash=ls),
|
990 |
+
yaxis='y3', legendgroup=res["name"]))
|
991 |
+
|
992 |
+
if plot_config.get('show_params'):
|
993 |
+
x_positions = np.linspace(0, 1, num_models * 2 + 1)[1::2]
|
994 |
+
for i, res in enumerate(models_results):
|
995 |
+
model_display_name = AVAILABLE_MODELS.get(res["name"], MagicMock(display_name=res["name"])).display_name
|
996 |
+
text = f"<b>{model_display_name}</b><br>" + _generate_model_param_text(res, plot_config.get('decimal_places', 3)).replace('\n', '<br>')
|
997 |
+
fig.add_annotation(text=text, align='left', showarrow=False, xref='paper',
|
998 |
+
yref='paper', x=x_positions[i], y=-0.35, bordercolor='gray',
|
999 |
+
borderwidth=1, bgcolor='ivory', opacity=0.9)
|
1000 |
+
|
1001 |
fig.update_layout(
|
1002 |
+
title=f"Comparación de Modelos (Interactivo): {plot_config.get('exp_name', '')}",
|
1003 |
+
xaxis=dict(domain=[0.18, 0.82]),
|
1004 |
+
yaxis=dict(title=plot_config['axis_labels']['biomass_label'], titlefont=dict(color='navy'),
|
1005 |
+
tickfont=dict(color='navy')),
|
1006 |
+
yaxis2=dict(title=plot_config['axis_labels']['substrate_label'], titlefont=dict(color='darkgreen'),
|
1007 |
+
tickfont=dict(color='darkgreen'), overlaying='y', side='right'),
|
1008 |
+
yaxis3=dict(title=plot_config['axis_labels']['product_label'], titlefont=dict(color='darkred'),
|
1009 |
+
tickfont=dict(color='darkred'), overlaying='y', side='right', position=0.85),
|
1010 |
+
legend=dict(traceorder="grouped", yanchor="middle", y=0.5, xanchor="right", x=-0.15),
|
1011 |
+
margin=dict(l=200, r=150, b=250 if plot_config.get('show_params') else 80, t=80),
|
1012 |
+
template="plotly_white" if plot_config.get('theme', 'light') == 'light' else "plotly_dark",
|
1013 |
+
showlegend=plot_config.get('show_legend', True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1014 |
)
|
|
|
1015 |
return fig
|
1016 |
|
1017 |
+
def _generate_model_param_text(result: Dict, decimals: int) -> str:
|
1018 |
+
"""Genera el texto formateado de los parámetros para las cajas de anotación"""
|
1019 |
+
text = ""
|
1020 |
+
for comp in COMPONENTS:
|
1021 |
+
if params := result.get('params', {}).get(comp):
|
1022 |
+
p_str = ', '.join([f"{k}={format_number(v, decimals)}" for k, v in params.items()])
|
1023 |
+
r2 = result.get('r2', {}).get(comp, 0)
|
1024 |
+
rmse = result.get('rmse', {}).get(comp, 0)
|
1025 |
+
text += f"{comp[:4].capitalize()}: {p_str}\n(R²={format_number(r2, 3)}, RMSE={format_number(rmse, 3)})\n"
|
1026 |
+
return text.strip()
|
1027 |
+
|
1028 |
+
# --- FUNCIONES DE DESCARGA Y REPORTES ---
|
1029 |
+
|
1030 |
+
def create_zip_file(image_list: List[Any]) -> Optional[str]:
|
1031 |
+
"""Crea un archivo ZIP con todas las imágenes"""
|
1032 |
+
if not image_list:
|
1033 |
+
gr.Warning("No hay gráficos para descargar.")
|
1034 |
+
return None
|
1035 |
+
try:
|
1036 |
+
zip_buffer = io.BytesIO()
|
1037 |
+
with zipfile.ZipFile(zip_buffer, "w", zipfile.ZIP_DEFLATED) as zf:
|
1038 |
+
for i, fig in enumerate(image_list):
|
1039 |
+
buf = io.BytesIO()
|
1040 |
+
if isinstance(fig, go.Figure):
|
1041 |
+
buf.write(fig.to_image(format="png", scale=2, engine="kaleido"))
|
1042 |
+
elif isinstance(fig, plt.Figure):
|
1043 |
+
fig.savefig(buf, format='png', dpi=200, bbox_inches='tight')
|
1044 |
+
plt.close(fig)
|
1045 |
+
elif isinstance(fig, Image.Image):
|
1046 |
+
fig.save(buf, 'PNG')
|
1047 |
+
else:
|
1048 |
+
continue
|
1049 |
+
buf.seek(0)
|
1050 |
+
zf.writestr(f"grafico_{i+1}.png", buf.read())
|
1051 |
+
|
1052 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".zip") as tmp:
|
1053 |
+
tmp.write(zip_buffer.getvalue())
|
1054 |
+
return tmp.name
|
1055 |
+
except Exception as e:
|
1056 |
+
traceback.print_exc()
|
1057 |
+
gr.Error(f"Error al crear el archivo ZIP: {e}")
|
1058 |
+
return None
|
1059 |
+
|
1060 |
+
def create_word_report(image_list: List[Any], table_df: pd.DataFrame, decimals: int) -> Optional[str]:
|
1061 |
+
"""Crea un reporte en Word con imágenes y tablas"""
|
1062 |
+
if not image_list and (table_df is None or table_df.empty):
|
1063 |
+
gr.Warning("No hay datos ni gráficos para crear el reporte.")
|
1064 |
+
return None
|
1065 |
+
try:
|
1066 |
+
doc = Document()
|
1067 |
+
doc.add_heading('Reporte de Análisis de Cinéticas', 0)
|
1068 |
+
|
1069 |
+
# Resumen ejecutivo
|
1070 |
+
doc.add_heading('Resumen Ejecutivo', level=1)
|
1071 |
+
doc.add_paragraph(f'Fecha del análisis: {pd.Timestamp.now().strftime("%Y-%m-%d %H:%M")}')
|
1072 |
+
doc.add_paragraph(f'Total de experimentos analizados: {len(table_df["Experimento"].unique()) if table_df is not None and not table_df.empty else 0}')
|
1073 |
+
doc.add_paragraph(f'Modelos utilizados: {", ".join(table_df["Modelo"].unique()) if table_df is not None and not table_df.empty else "N/A"}')
|
1074 |
+
|
1075 |
+
if table_df is not None and not table_df.empty:
|
1076 |
+
doc.add_heading('Tabla de Resultados', level=1)
|
1077 |
+
table = doc.add_table(rows=1, cols=len(table_df.columns), style='Table Grid')
|
1078 |
+
for i, col in enumerate(table_df.columns):
|
1079 |
+
table.cell(0, i).text = str(col)
|
1080 |
+
for _, row in table_df.iterrows():
|
1081 |
+
cells = table.add_row().cells
|
1082 |
+
for i, val in enumerate(row):
|
1083 |
+
cells[i].text = str(format_number(val, decimals))
|
1084 |
+
|
1085 |
+
if image_list:
|
1086 |
+
doc.add_page_break()
|
1087 |
+
doc.add_heading('Gráficos Generados', level=1)
|
1088 |
+
for i, fig in enumerate(image_list):
|
1089 |
+
buf = io.BytesIO()
|
1090 |
+
if isinstance(fig, go.Figure):
|
1091 |
+
buf.write(fig.to_image(format="png", scale=2, engine="kaleido"))
|
1092 |
+
elif isinstance(fig, plt.Figure):
|
1093 |
+
fig.savefig(buf, format='png', dpi=200, bbox_inches='tight')
|
1094 |
+
plt.close(fig)
|
1095 |
+
elif isinstance(fig, Image.Image):
|
1096 |
+
fig.save(buf, 'PNG')
|
1097 |
+
else:
|
1098 |
+
continue
|
1099 |
+
buf.seek(0)
|
1100 |
+
doc.add_paragraph(f'Gráfico {i+1}', style='Heading 3')
|
1101 |
+
doc.add_picture(buf, width=Inches(6.0))
|
1102 |
+
doc.add_paragraph('') # Espacio entre imágenes
|
1103 |
+
|
1104 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".docx") as tmp:
|
1105 |
+
doc.save(tmp.name)
|
1106 |
+
return tmp.name
|
1107 |
+
except Exception as e:
|
1108 |
+
traceback.print_exc()
|
1109 |
+
gr.Error(f"Error al crear el reporte de Word: {e}")
|
1110 |
+
return None
|
1111 |
+
|
1112 |
+
def create_pdf_report(image_list: List[Any], table_df: pd.DataFrame, decimals: int) -> Optional[str]:
|
1113 |
+
"""Crea un reporte en PDF con imágenes y tablas"""
|
1114 |
+
if not image_list and (table_df is None or table_df.empty):
|
1115 |
+
gr.Warning("No hay datos ni gráficos para crear el reporte.")
|
1116 |
+
return None
|
1117 |
+
try:
|
1118 |
+
pdf = FPDF()
|
1119 |
+
pdf.set_auto_page_break(auto=True, margin=15)
|
1120 |
+
pdf.add_page()
|
1121 |
+
pdf.set_font("Helvetica", 'B', 16)
|
1122 |
+
pdf.cell(0, 10, 'Reporte de Análisis de Cinéticas', new_x=XPos.LMARGIN, new_y=YPos.NEXT, align='C')
|
1123 |
+
|
1124 |
+
# Resumen ejecutivo
|
1125 |
+
pdf.ln(10)
|
1126 |
+
pdf.set_font("Helvetica", '', 10)
|
1127 |
+
pdf.cell(0, 10, f'Fecha del análisis: {pd.Timestamp.now().strftime("%Y-%m-%d %H:%M")}',
|
1128 |
+
new_x=XPos.LMARGIN, new_y=YPos.NEXT)
|
1129 |
+
|
1130 |
+
if table_df is not None and not table_df.empty:
|
1131 |
+
pdf.ln(10)
|
1132 |
+
pdf.set_font("Helvetica", 'B', 12)
|
1133 |
+
pdf.cell(0, 10, 'Tabla de Resultados', new_x=XPos.LMARGIN, new_y=YPos.NEXT, align='L')
|
1134 |
+
pdf.set_font("Helvetica", 'B', 8)
|
1135 |
+
|
1136 |
+
effective_page_width = pdf.w - 2 * pdf.l_margin
|
1137 |
+
num_cols = len(table_df.columns)
|
1138 |
+
col_width = effective_page_width / num_cols if num_cols > 0 else 0
|
1139 |
+
|
1140 |
+
if num_cols > 15:
|
1141 |
+
pdf.set_font_size(6)
|
1142 |
+
elif num_cols > 10:
|
1143 |
+
pdf.set_font_size(7)
|
1144 |
+
|
1145 |
+
for col in table_df.columns:
|
1146 |
+
pdf.cell(col_width, 10, str(col), border=1, align='C')
|
1147 |
+
pdf.ln()
|
1148 |
+
|
1149 |
+
pdf.set_font("Helvetica", '', 7)
|
1150 |
+
if num_cols > 15:
|
1151 |
+
pdf.set_font_size(5)
|
1152 |
+
elif num_cols > 10:
|
1153 |
+
pdf.set_font_size(6)
|
1154 |
+
|
1155 |
+
for _, row in table_df.iterrows():
|
1156 |
+
for val in row:
|
1157 |
+
pdf.cell(col_width, 10, str(format_number(val, decimals)), border=1, align='R')
|
1158 |
+
pdf.ln()
|
1159 |
+
|
1160 |
+
if image_list:
|
1161 |
+
for i, fig in enumerate(image_list):
|
1162 |
+
pdf.add_page()
|
1163 |
+
pdf.set_font("Helvetica", 'B', 12)
|
1164 |
+
pdf.cell(0, 10, f'Gráfico {i+1}', new_x=XPos.LMARGIN, new_y=YPos.NEXT, align='L')
|
1165 |
+
pdf.ln(5)
|
1166 |
+
|
1167 |
+
buf = io.BytesIO()
|
1168 |
+
if isinstance(fig, go.Figure):
|
1169 |
+
buf.write(fig.to_image(format="png", scale=2, engine="kaleido"))
|
1170 |
+
elif isinstance(fig, plt.Figure):
|
1171 |
+
fig.savefig(buf, format='png', dpi=200, bbox_inches='tight')
|
1172 |
+
plt.close(fig)
|
1173 |
+
elif isinstance(fig, Image.Image):
|
1174 |
+
fig.save(buf, 'PNG')
|
1175 |
+
else:
|
1176 |
+
continue
|
1177 |
+
|
1178 |
+
buf.seek(0)
|
1179 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_img:
|
1180 |
+
tmp_img.write(buf.read())
|
1181 |
+
pdf.image(tmp_img.name, x=None, y=None, w=pdf.w - 20)
|
1182 |
+
os.remove(tmp_img.name)
|
1183 |
+
|
1184 |
+
pdf_bytes = pdf.output()
|
1185 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
|
1186 |
+
tmp.write(pdf_bytes)
|
1187 |
+
return tmp.name
|
1188 |
+
except Exception as e:
|
1189 |
+
traceback.print_exc()
|
1190 |
+
gr.Error(f"Error al crear el reporte PDF: {e}")
|
1191 |
+
return None
|
1192 |
+
|
1193 |
# --- FUNCIÓN PRINCIPAL DE ANÁLISIS ---
|
1194 |
+
|
1195 |
+
def run_analysis(file, model_names, mode, engine, exp_names, settings):
|
1196 |
+
"""Ejecuta el análisis completo con todos los modos"""
|
1197 |
+
if not file:
|
1198 |
+
return [], pd.DataFrame(), "Error: Sube un archivo Excel.", pd.DataFrame()
|
1199 |
+
if not model_names:
|
1200 |
+
return [], pd.DataFrame(), "Error: Selecciona un modelo.", pd.DataFrame()
|
1201 |
|
1202 |
+
try:
|
1203 |
xls = pd.ExcelFile(file.name)
|
1204 |
+
except Exception as e:
|
1205 |
+
return [], pd.DataFrame(), f"Error al leer archivo: {e}", pd.DataFrame()
|
1206 |
|
1207 |
+
figs = []
|
1208 |
+
results_data = []
|
1209 |
+
msgs = []
|
1210 |
|
1211 |
+
exp_list = [n.strip() for n in exp_names.split('\n') if n.strip()]
|
1212 |
|
1213 |
for i, sheet in enumerate(xls.sheet_names):
|
1214 |
exp_name = exp_list[i] if i < len(exp_list) else f"Hoja '{sheet}'"
|
1215 |
+
|
1216 |
try:
|
1217 |
df = pd.read_excel(xls, sheet_name=sheet, header=[0,1])
|
1218 |
reader = BioprocessFitter(list(AVAILABLE_MODELS.values())[0])
|
1219 |
reader.process_data_from_df(df)
|
1220 |
|
1221 |
+
if reader.data_time is None:
|
1222 |
msgs.append(f"WARN: Sin datos de tiempo en '{sheet}'.")
|
1223 |
continue
|
1224 |
+
|
1225 |
+
cfg = settings.copy()
|
1226 |
+
cfg.update({'exp_name': exp_name, 'time_exp': reader.data_time})
|
1227 |
|
1228 |
+
for c in COMPONENTS:
|
1229 |
+
cfg[f'{c}_exp'] = reader.data_means[c]
|
1230 |
+
cfg[f'{c}_std'] = reader.data_stds[c]
|
|
|
|
|
|
|
|
|
|
|
|
|
1231 |
|
1232 |
t_fine = reader._generate_fine_time_grid(reader.data_time)
|
1233 |
+
plot_results = []
|
1234 |
|
1235 |
for m_name in model_names:
|
1236 |
+
if m_name not in AVAILABLE_MODELS:
|
1237 |
msgs.append(f"WARN: Modelo '{m_name}' no disponible.")
|
1238 |
continue
|
1239 |
|
1240 |
+
fitter = BioprocessFitter(AVAILABLE_MODELS[m_name], maxfev=int(settings.get('maxfev', 50000)))
|
|
|
|
|
|
|
|
|
1241 |
fitter.data_time = reader.data_time
|
1242 |
fitter.data_means = reader.data_means
|
1243 |
fitter.data_stds = reader.data_stds
|
1244 |
+
fitter.raw_data = reader.raw_data
|
1245 |
fitter.fit_all_models()
|
1246 |
|
1247 |
+
# Guardar resultados numéricos
|
1248 |
row = {'Experimento': exp_name, 'Modelo': fitter.model.display_name}
|
1249 |
for c in COMPONENTS:
|
1250 |
+
if fitter.params[c]:
|
1251 |
row.update({f'{c.capitalize()}_{k}': v for k, v in fitter.params[c].items()})
|
1252 |
row[f'R2_{c.capitalize()}'] = fitter.r2.get(c)
|
1253 |
row[f'RMSE_{c.capitalize()}'] = fitter.rmse.get(c)
|
1254 |
row[f'MAE_{c.capitalize()}'] = fitter.mae.get(c)
|
1255 |
row[f'AIC_{c.capitalize()}'] = fitter.aic.get(c)
|
1256 |
row[f'BIC_{c.capitalize()}'] = fitter.bic.get(c)
|
|
|
1257 |
results_data.append(row)
|
1258 |
|
1259 |
+
# Generar gráficos según el modo
|
1260 |
+
if mode in ["average", "combined"]:
|
1261 |
+
if hasattr(fitter, 'plot_individual_or_combined'):
|
1262 |
+
figs.append(fitter.plot_individual_or_combined(cfg, mode))
|
1263 |
+
elif mode == "individual":
|
1264 |
+
# Crear gráficos para cada réplica
|
1265 |
+
for rep_idx, rep_data in enumerate(fitter.raw_data[C_BIOMASS]):
|
1266 |
+
cfg_rep = cfg.copy()
|
1267 |
+
cfg_rep['exp_name'] = f"{exp_name} - Réplica {rep_idx + 1}"
|
1268 |
+
for c in COMPONENTS:
|
1269 |
+
if len(fitter.raw_data[c]) > rep_idx:
|
1270 |
+
cfg_rep[f'{c}_exp'] = fitter.raw_data[c][rep_idx]
|
1271 |
+
cfg_rep[f'{c}_std'] = None # No hay std para réplicas individuales
|
1272 |
+
figs.append(fitter.plot_individual_or_combined(cfg_rep, "average"))
|
1273 |
+
else:
|
1274 |
+
# Modo comparación de modelos
|
1275 |
+
X, S, P = fitter.get_model_curves_for_plot(t_fine, settings.get('use_differential', False))
|
1276 |
+
plot_results.append({
|
1277 |
+
'name': m_name,
|
1278 |
+
'X': X,
|
1279 |
+
'S': S,
|
1280 |
+
'P': P,
|
1281 |
+
'params': fitter.params,
|
1282 |
+
'r2': fitter.r2,
|
1283 |
+
'rmse': fitter.rmse
|
1284 |
+
})
|
1285 |
+
|
1286 |
+
if mode == "model_comparison" and plot_results:
|
1287 |
+
plot_func = plot_model_comparison_plotly if engine == 'Plotly (Interactivo)' else plot_model_comparison_matplotlib
|
1288 |
+
figs.append(plot_func(cfg, plot_results))
|
1289 |
|
1290 |
+
except Exception as e:
|
1291 |
msgs.append(f"ERROR en '{sheet}': {e}")
|
1292 |
traceback.print_exc()
|
1293 |
|
1294 |
msg = "Análisis completado." + ("\n" + "\n".join(msgs) if msgs else "")
|
1295 |
df_res = pd.DataFrame(results_data).dropna(axis=1, how='all')
|
1296 |
|
1297 |
+
if not df_res.empty:
|
1298 |
+
# Ordenar columnas
|
1299 |
+
id_c = ['Experimento', 'Modelo']
|
1300 |
+
p_c = sorted([c for c in df_res.columns if '_' in c and not any(m in c for m in ['R2', 'RMSE', 'MAE', 'AIC', 'BIC'])])
|
1301 |
+
m_c = sorted([c for c in df_res.columns if any(m in c for m in ['R2', 'RMSE', 'MAE', 'AIC', 'BIC'])])
|
1302 |
+
df_res = df_res[[c for c in id_c + p_c + m_c if c in df_res.columns]]
|
1303 |
+
|
1304 |
+
# Crear DataFrame formateado para UI
|
1305 |
+
df_ui = df_res.copy()
|
1306 |
+
for c in df_ui.select_dtypes(include=np.number).columns:
|
1307 |
+
df_ui[c] = df_ui[c].apply(lambda x: format_number(x, settings.get('decimal_places', 3)) if pd.notna(x) else '')
|
1308 |
+
else:
|
1309 |
+
df_ui = pd.DataFrame()
|
1310 |
|
1311 |
+
return figs, df_ui, msg, df_res
|
1312 |
|
1313 |
# --- API ENDPOINTS PARA AGENTES DE IA ---
|
1314 |
|
|
|
1400 |
except Exception as e:
|
1401 |
return {"status": "error", "message": str(e)}
|
1402 |
|
1403 |
+
# --- INTERFAZ GRADIO COMPLETA ---
|
1404 |
|
1405 |
def create_gradio_interface() -> gr.Blocks:
|
1406 |
+
"""Crea la interfaz completa con todas las funcionalidades"""
|
1407 |
|
1408 |
def change_language(lang_key: str) -> Dict:
|
1409 |
"""Cambia el idioma de la interfaz"""
|
1410 |
lang = Language[lang_key]
|
1411 |
trans = TRANSLATIONS.get(lang, TRANSLATIONS[Language.ES])
|
|
|
1412 |
return trans["title"], trans["subtitle"]
|
1413 |
|
1414 |
# Obtener opciones de modelo
|
|
|
1442 |
)
|
1443 |
|
1444 |
with gr.Tabs() as tabs:
|
1445 |
+
# --- TAB 1: GUÍA Y FORMATO ---
|
1446 |
+
with gr.TabItem("1. Guía y Formato de Datos"):
|
1447 |
+
with gr.Row():
|
1448 |
+
with gr.Column(scale=2):
|
1449 |
+
gr.Markdown("""
|
1450 |
+
### Bienvenido al Analizador de Cinéticas
|
1451 |
+
Esta herramienta te permite ajustar modelos matemáticos a tus datos de crecimiento microbiano.
|
1452 |
+
|
1453 |
+
**Pasos a seguir:**
|
1454 |
+
1. Prepara tu archivo Excel según el formato especificado a la derecha.
|
1455 |
+
2. Ve a la pestaña **"2. Configuración y Ejecución"**.
|
1456 |
+
3. Sube tu archivo y selecciona los modelos cinéticos que deseas probar.
|
1457 |
+
4. Ajusta las opciones de visualización y análisis según tus preferencias.
|
1458 |
+
5. Haz clic en **"Analizar y Graficar"**.
|
1459 |
+
6. Explora los resultados en la pestaña **"3. Resultados"**.
|
1460 |
+
|
1461 |
+
### Modos de Análisis
|
1462 |
+
- **Individual**: Un gráfico por cada réplica
|
1463 |
+
- **Promedio**: Promedio de réplicas con barras de error
|
1464 |
+
- **Combinado**: Todos los componentes en un solo gráfico
|
1465 |
+
- **Comparación**: Comparación de múltiples modelos
|
1466 |
+
""")
|
1467 |
+
with gr.Column(scale=3):
|
1468 |
+
gr.Markdown("### Formato del Archivo Excel")
|
1469 |
+
gr.Markdown("Usa una **cabecera de dos niveles** para tus datos.")
|
1470 |
+
df_ejemplo = pd.DataFrame({
|
1471 |
+
('Rep1', 'Tiempo'): [0, 2, 4, 6],
|
1472 |
+
('Rep1', 'Biomasa'): [0.1, 0.5, 2.5, 5.0],
|
1473 |
+
('Rep1', 'Sustrato'): [10.0, 9.5, 7.0, 2.0],
|
1474 |
+
('Rep1', 'Producto'): [0.0, 0.1, 0.5, 1.2],
|
1475 |
+
('Rep2', 'Tiempo'): [0, 2, 4, 6],
|
1476 |
+
('Rep2', 'Biomasa'): [0.12, 0.48, 2.6, 5.2],
|
1477 |
+
('Rep2', 'Sustrato'): [10.2, 9.6, 7.1, 2.1],
|
1478 |
+
('Rep2', 'Producto'): [0.0, 0.12, 0.48, 1.1],
|
1479 |
+
})
|
1480 |
+
gr.DataFrame(df_ejemplo, interactive=False, label="Ejemplo de Formato")
|
1481 |
|
1482 |
+
# --- TAB 2: CONFIGURACIÓN Y EJECUCIÓN ---
|
1483 |
+
with gr.TabItem("2. Configuración y Ejecución"):
|
1484 |
with gr.Row():
|
1485 |
with gr.Column(scale=1):
|
1486 |
+
file_input = gr.File(label="Sube tu archivo Excel (.xlsx)", file_types=['.xlsx'])
|
|
|
|
|
|
|
|
|
1487 |
exp_names_input = gr.Textbox(
|
1488 |
+
label="Nombres de Experimentos (opcional)",
|
1489 |
+
placeholder="Nombre Hoja 1\nNombre Hoja 2\n...",
|
1490 |
+
lines=3,
|
1491 |
+
info="Un nombre por línea, en el mismo orden que las hojas del Excel."
|
1492 |
)
|
|
|
1493 |
model_selection_input = gr.CheckboxGroup(
|
1494 |
choices=MODEL_CHOICES,
|
1495 |
+
label="Modelos a Probar",
|
1496 |
value=DEFAULT_MODELS
|
1497 |
)
|
1498 |
+
analysis_mode_input = gr.Radio(
|
1499 |
+
["individual", "average", "combined", "model_comparison"],
|
1500 |
+
label="Modo de Análisis",
|
1501 |
+
value="average",
|
1502 |
+
info="Individual: por réplica. Average: promedio. Combined: 3 ejes. Comparación: todos los modelos."
|
1503 |
+
)
|
1504 |
+
plotting_engine_input = gr.Radio(
|
1505 |
+
["Seaborn (Estático)", "Plotly (Interactivo)"],
|
1506 |
+
label="Motor Gráfico (en modo Comparación)",
|
1507 |
+
value="Plotly (Interactivo)"
|
1508 |
+
)
|
|
|
1509 |
|
1510 |
with gr.Column(scale=2):
|
1511 |
+
with gr.Accordion("Opciones Generales de Análisis", open=True):
|
1512 |
+
decimal_places_input = gr.Slider(0, 10, value=3, step=1, label="Precisión Decimal")
|
1513 |
+
show_params_input = gr.Checkbox(label="Mostrar Parámetros en Gráfico", value=True)
|
1514 |
+
show_legend_input = gr.Checkbox(label="Mostrar Leyenda en Gráfico", value=True)
|
1515 |
+
use_differential_input = gr.Checkbox(label="Usar EDO para graficar", value=False)
|
1516 |
+
maxfev_input = gr.Number(label="Iteraciones Máximas de Ajuste", value=50000)
|
1517 |
+
|
1518 |
+
with gr.Accordion("Etiquetas de los Ejes", open=True):
|
1519 |
+
with gr.Row():
|
1520 |
+
xlabel_input = gr.Textbox(label="Etiqueta Eje X", value="Tiempo (h)")
|
1521 |
+
with gr.Row():
|
1522 |
+
ylabel_biomass_input = gr.Textbox(label="Etiqueta Biomasa", value="Biomasa (g/L)")
|
1523 |
+
ylabel_substrate_input = gr.Textbox(label="Etiqueta Sustrato", value="Sustrato (g/L)")
|
1524 |
+
ylabel_product_input = gr.Textbox(label="Etiqueta Producto", value="Producto (g/L)")
|
1525 |
|
1526 |
+
with gr.Accordion("Opciones de Estilo", open=False):
|
1527 |
+
style_input = gr.Dropdown(
|
1528 |
+
['whitegrid', 'darkgrid', 'white', 'dark', 'ticks'],
|
1529 |
+
label="Estilo General (Matplotlib)",
|
1530 |
+
value='whitegrid'
|
1531 |
+
)
|
1532 |
+
with gr.Row():
|
1533 |
+
with gr.Column():
|
1534 |
+
gr.Markdown("**Biomasa**")
|
1535 |
+
biomass_point_color_input = gr.ColorPicker(label="Color Puntos", value='#0072B2')
|
1536 |
+
biomass_line_color_input = gr.ColorPicker(label="Color Línea", value='#56B4E9')
|
1537 |
+
biomass_marker_style_input = gr.Dropdown(
|
1538 |
+
['o', 's', '^', 'D', 'p', '*', 'X'],
|
1539 |
+
label="Marcador",
|
1540 |
+
value='o'
|
1541 |
+
)
|
1542 |
+
biomass_line_style_input = gr.Dropdown(
|
1543 |
+
['-', '--', '-.', ':'],
|
1544 |
+
label="Estilo Línea",
|
1545 |
+
value='-'
|
1546 |
+
)
|
1547 |
+
with gr.Column():
|
1548 |
+
gr.Markdown("**Sustrato**")
|
1549 |
+
substrate_point_color_input = gr.ColorPicker(label="Color Puntos", value='#009E73')
|
1550 |
+
substrate_line_color_input = gr.ColorPicker(label="Color Línea", value='#34E499')
|
1551 |
+
substrate_marker_style_input = gr.Dropdown(
|
1552 |
+
['o', 's', '^', 'D', 'p', '*', 'X'],
|
1553 |
+
label="Marcador",
|
1554 |
+
value='s'
|
1555 |
+
)
|
1556 |
+
substrate_line_style_input = gr.Dropdown(
|
1557 |
+
['-', '--', '-.', ':'],
|
1558 |
+
label="Estilo Línea",
|
1559 |
+
value='--'
|
1560 |
+
)
|
1561 |
+
with gr.Column():
|
1562 |
+
gr.Markdown("**Producto**")
|
1563 |
+
product_point_color_input = gr.ColorPicker(label="Color Puntos", value='#D55E00')
|
1564 |
+
product_line_color_input = gr.ColorPicker(label="Color Línea", value='#F0E442')
|
1565 |
+
product_marker_style_input = gr.Dropdown(
|
1566 |
+
['o', 's', '^', 'D', 'p', '*', 'X'],
|
1567 |
+
label="Marcador",
|
1568 |
+
value='^'
|
1569 |
+
)
|
1570 |
+
product_line_style_input = gr.Dropdown(
|
1571 |
+
['-', '--', '-.', ':'],
|
1572 |
+
label="Estilo Línea",
|
1573 |
+
value='-.'
|
1574 |
+
)
|
1575 |
+
|
1576 |
+
with gr.Row():
|
1577 |
+
legend_pos_input = gr.Radio(
|
1578 |
+
["best", "upper right", "upper left", "lower left", "lower right", "center"],
|
1579 |
+
label="Posición Leyenda",
|
1580 |
+
value="best"
|
1581 |
+
)
|
1582 |
+
params_pos_input = gr.Radio(
|
1583 |
+
["upper right", "upper left", "lower right", "lower left"],
|
1584 |
+
label="Posición Parámetros",
|
1585 |
+
value="upper right"
|
1586 |
+
)
|
1587 |
|
1588 |
+
with gr.Accordion("Opciones de Barra de Error", open=False):
|
1589 |
+
show_error_bars_input = gr.Checkbox(label="Mostrar barras de error", value=True)
|
1590 |
+
error_cap_size_input = gr.Slider(1, 10, 3, step=1, label="Tamaño Tapa Error")
|
1591 |
+
error_line_width_input = gr.Slider(0.5, 5, 1.0, step=0.5, label="Grosor Línea Error")
|
1592 |
+
|
1593 |
+
simulate_btn = gr.Button("Analizar y Graficar", variant="primary")
|
1594 |
+
|
1595 |
# --- TAB 3: RESULTADOS ---
|
1596 |
+
with gr.TabItem("3. Resultados"):
|
1597 |
+
status_output = gr.Textbox(label="Estado del Análisis", interactive=False, lines=2)
|
1598 |
+
gallery_output = gr.Gallery(
|
1599 |
+
label="Gráficos Generados",
|
1600 |
+
columns=2,
|
1601 |
+
height=600,
|
1602 |
+
object_fit="contain",
|
1603 |
+
preview=True
|
|
|
1604 |
)
|
1605 |
|
1606 |
+
with gr.Accordion("Descargar Reportes y Gráficos", open=True):
|
1607 |
+
with gr.Row():
|
1608 |
+
zip_btn = gr.Button("📦 Descargar Gráficos (.zip)")
|
1609 |
+
word_btn = gr.Button("📄 Descargar Reporte (.docx)")
|
1610 |
+
pdf_btn = gr.Button("📄 Descargar Reporte (.pdf)")
|
1611 |
+
download_output = gr.File(label="Archivo de Descarga", interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1612 |
|
1613 |
+
gr.Markdown("### Tabla de Resultados Numéricos")
|
1614 |
+
table_output = gr.DataFrame(wrap=True)
|
|
|
|
|
|
|
1615 |
|
1616 |
+
with gr.Row():
|
1617 |
+
excel_btn = gr.Button("📊 Descargar Tabla (.xlsx)")
|
1618 |
+
csv_btn = gr.Button("📊 Descargar Tabla (.csv)")
|
1619 |
+
download_table_output = gr.File(label="Descargar Tabla", interactive=False)
|
1620 |
|
1621 |
+
# Estados para almacenar datos
|
1622 |
+
df_for_export = gr.State(pd.DataFrame())
|
1623 |
+
figures_for_export = gr.State([])
|
1624 |
+
|
1625 |
+
# --- EVENTOS ---
|
1626 |
+
|
1627 |
+
def simulation_wrapper(file, models, mode, engine, names, use_diff, s_par, s_leg, maxfev,
|
1628 |
+
decimals, x_label, bio_label, sub_label, prod_label, style, s_err,
|
1629 |
+
cap, lw, l_pos, p_pos, bio_pc, bio_lc, bio_ms, bio_ls, sub_pc,
|
1630 |
+
sub_lc, sub_ms, sub_ls, prod_pc, prod_lc, prod_ms, prod_ls):
|
1631 |
+
try:
|
1632 |
+
def rgba_to_hex(rgba_string: str) -> str:
|
1633 |
+
if not isinstance(rgba_string, str) or rgba_string.startswith('#'):
|
1634 |
+
return rgba_string
|
1635 |
+
try:
|
1636 |
+
parts = rgba_string.lower().replace('rgba', '').replace('rgb', '').replace('(', '').replace(')', '')
|
1637 |
+
r, g, b, *_ = map(float, parts.split(','))
|
1638 |
+
return f'#{int(r):02x}{int(g):02x}{int(b):02x}'
|
1639 |
+
except (ValueError, TypeError):
|
1640 |
+
return "#000000"
|
1641 |
+
|
1642 |
+
plot_settings = {
|
1643 |
+
'decimal_places': int(decimals),
|
1644 |
+
'use_differential': use_diff,
|
1645 |
+
'style': style,
|
1646 |
+
'show_legend': s_leg,
|
1647 |
+
'show_params': s_par,
|
1648 |
+
'maxfev': int(maxfev),
|
1649 |
+
'axis_labels': {
|
1650 |
+
'x_label': x_label,
|
1651 |
+
'biomass_label': bio_label,
|
1652 |
+
'substrate_label': sub_label,
|
1653 |
+
'product_label': prod_label
|
1654 |
},
|
1655 |
+
'legend_pos': l_pos,
|
1656 |
+
'params_pos': p_pos,
|
1657 |
+
'show_error_bars': s_err,
|
1658 |
+
'error_cap_size': cap,
|
1659 |
+
'error_line_width': lw,
|
1660 |
+
f'{C_BIOMASS}_point_color': rgba_to_hex(bio_pc),
|
1661 |
+
f'{C_BIOMASS}_line_color': rgba_to_hex(bio_lc),
|
1662 |
+
f'{C_BIOMASS}_marker_style': bio_ms,
|
1663 |
+
f'{C_BIOMASS}_line_style': bio_ls,
|
1664 |
+
f'{C_SUBSTRATE}_point_color': rgba_to_hex(sub_pc),
|
1665 |
+
f'{C_SUBSTRATE}_line_color': rgba_to_hex(sub_lc),
|
1666 |
+
f'{C_SUBSTRATE}_marker_style': sub_ms,
|
1667 |
+
f'{C_SUBSTRATE}_line_style': sub_ls,
|
1668 |
+
f'{C_PRODUCT}_point_color': rgba_to_hex(prod_pc),
|
1669 |
+
f'{C_PRODUCT}_line_color': rgba_to_hex(prod_lc),
|
1670 |
+
f'{C_PRODUCT}_marker_style': prod_ms,
|
1671 |
+
f'{C_PRODUCT}_line_style': prod_ls,
|
1672 |
}
|
|
|
|
|
|
|
1673 |
|
1674 |
+
figures, df_ui, msg, df_export = run_analysis(file, models, mode, engine, names, plot_settings)
|
|
|
1675 |
|
1676 |
+
# Convertir figuras a imágenes para galería
|
1677 |
+
image_list = []
|
1678 |
+
for fig in figures:
|
1679 |
+
buf = io.BytesIO()
|
1680 |
+
if isinstance(fig, go.Figure):
|
1681 |
+
buf.write(fig.to_image(format="png", scale=2, engine="kaleido"))
|
1682 |
+
elif isinstance(fig, plt.Figure):
|
1683 |
+
fig.savefig(buf, format='png', bbox_inches='tight', dpi=150)
|
1684 |
+
plt.close(fig)
|
1685 |
+
buf.seek(0)
|
1686 |
+
image_list.append(Image.open(buf).convert("RGB"))
|
1687 |
|
1688 |
+
return image_list, df_ui, msg, df_export, figures
|
|
|
|
|
|
|
|
|
1689 |
|
1690 |
+
except Exception as e:
|
1691 |
+
print(f"--- ERROR CAPTURADO EN WRAPPER ---\n{traceback.format_exc()}")
|
1692 |
+
return [], pd.DataFrame(), f"Error Crítico: {e}", pd.DataFrame(), []
|
1693 |
+
|
1694 |
+
all_inputs = [
|
1695 |
+
file_input, model_selection_input, analysis_mode_input, plotting_engine_input, exp_names_input,
|
1696 |
+
use_differential_input, show_params_input, show_legend_input, maxfev_input, decimal_places_input,
|
1697 |
+
xlabel_input, ylabel_biomass_input, ylabel_substrate_input, ylabel_product_input,
|
1698 |
+
style_input, show_error_bars_input, error_cap_size_input, error_line_width_input,
|
1699 |
+
legend_pos_input, params_pos_input,
|
1700 |
+
biomass_point_color_input, biomass_line_color_input, biomass_marker_style_input, biomass_line_style_input,
|
1701 |
+
substrate_point_color_input, substrate_line_color_input, substrate_marker_style_input, substrate_line_style_input,
|
1702 |
+
product_point_color_input, product_line_color_input, product_marker_style_input, product_line_style_input
|
1703 |
+
]
|
1704 |
|
1705 |
+
all_outputs = [gallery_output, table_output, status_output, df_for_export, figures_for_export]
|
1706 |
|
1707 |
+
simulate_btn.click(fn=simulation_wrapper, inputs=all_inputs, outputs=all_outputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1708 |
|
1709 |
+
# Funciones de descarga
|
1710 |
+
zip_btn.click(fn=create_zip_file, inputs=[figures_for_export], outputs=[download_output])
|
1711 |
+
word_btn.click(
|
1712 |
+
fn=create_word_report,
|
1713 |
+
inputs=[figures_for_export, df_for_export, decimal_places_input],
|
1714 |
+
outputs=[download_output]
|
1715 |
+
)
|
1716 |
+
pdf_btn.click(
|
1717 |
+
fn=create_pdf_report,
|
1718 |
+
inputs=[figures_for_export, df_for_export, decimal_places_input],
|
1719 |
+
outputs=[download_output]
|
1720 |
+
)
|
1721 |
+
|
1722 |
+
def export_table_to_file(df: pd.DataFrame, file_format: str) -> Optional[str]:
|
1723 |
+
if df is None or df.empty:
|
1724 |
+
gr.Warning("No hay datos para exportar.")
|
1725 |
+
return None
|
1726 |
+
suffix = ".xlsx" if file_format == "excel" else ".csv"
|
1727 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp:
|
1728 |
+
if file_format == "excel":
|
1729 |
+
df.to_excel(tmp.name, index=False)
|
1730 |
+
else:
|
1731 |
+
df.to_csv(tmp.name, index=False, encoding='utf-8-sig')
|
1732 |
+
return tmp.name
|
1733 |
+
|
1734 |
+
excel_btn.click(
|
1735 |
+
fn=lambda df: export_table_to_file(df, "excel"),
|
1736 |
+
inputs=[df_for_export],
|
1737 |
+
outputs=[download_table_output]
|
1738 |
+
)
|
1739 |
+
csv_btn.click(
|
1740 |
+
fn=lambda df: export_table_to_file(df, "csv"),
|
1741 |
+
inputs=[df_for_export],
|
1742 |
+
outputs=[download_table_output]
|
1743 |
)
|
1744 |
|
1745 |
# Cambio de idioma
|
|
|
1751 |
|
1752 |
# Cambio de tema
|
1753 |
def apply_theme(is_dark):
|
1754 |
+
return gr.Info("Tema cambiado. Los nuevos gráficos usarán el tema seleccionado.")
|
1755 |
|
1756 |
theme_toggle.change(
|
1757 |
fn=apply_theme,
|
1758 |
inputs=[theme_toggle],
|
1759 |
outputs=[]
|
1760 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1761 |
|
1762 |
return demo
|
1763 |
|
1764 |
+
# --- PUNTO DE ENTRADA PRINCIPAL ---
|
1765 |
|
1766 |
if __name__ == '__main__':
|
1767 |
# Lanzar aplicación Gradio
|