Spaces:
Running
Running
File size: 41,513 Bytes
d1eb779 631a418 f45845d 631a418 97fec7a 631a418 f45845d 5b01f71 af1d89d f45845d 2437f5f 3465447 af1d89d 2437f5f acfb117 2437f5f acfb117 2437f5f 9b58814 f5ee395 f45845d b05c448 f45845d d1eb779 da38434 2437f5f b05c448 9b58814 acfb117 3465447 acfb117 b05c448 fa429b6 acfb117 da38434 acfb117 f5ee395 3465447 f5ee395 acfb117 3465447 acfb117 b05c448 fa429b6 acfb117 da38434 acfb117 f5ee395 3465447 f5ee395 da38434 a7929b6 b05c448 a7929b6 da38434 3465447 da38434 a7929b6 b05c448 f45845d da38434 af1d89d da38434 a7929b6 da38434 acfb117 a7929b6 da38434 a7929b6 da38434 a7929b6 da38434 acfb117 a7929b6 da38434 a7929b6 9b58814 da38434 9b58814 af1d89d da38434 2437f5f da38434 9b58814 da38434 9b58814 af1d89d da38434 2437f5f da38434 a7929b6 da38434 a7929b6 9b58814 b05c448 f45845d 3465447 da38434 3465447 f5ee395 3465447 b05c448 3465447 b05c448 3465447 b05c448 3465447 1b614fd 3465447 1b614fd da38434 1b614fd 3465447 1b614fd da38434 e9a66f3 3465447 1b614fd da38434 1b614fd 3465447 1b614fd da38434 1b614fd 3465447 1b614fd 3465447 1b614fd 3465447 1b614fd af1d89d 1b614fd b05c448 1b614fd 3465447 1b614fd 3465447 1b614fd af1d89d 1b614fd 3465447 f889b91 3465447 f5ee395 b05c448 f889b91 f5ee395 b05c448 f889b91 3465447 f889b91 b05c448 f889b91 b05c448 f889b91 3465447 f889b91 3465447 f889b91 3465447 f889b91 b05c448 f889b91 3465447 f889b91 b05c448 f889b91 3465447 f889b91 3465447 b05c448 f889b91 3465447 f889b91 3465447 f889b91 3465447 f889b91 b05c448 f889b91 3465447 b05c448 f889b91 3465447 f889b91 3465447 f889b91 3465447 da38434 f889b91 a7929b6 b05c448 da38434 a7929b6 da38434 b05c448 1d9a7e8 3465447 b05c448 da38434 3465447 b05c448 3465447 da38434 b05c448 a7929b6 acfb117 b05c448 da38434 b05c448 3465447 b05c448 3465447 b05c448 3465447 b05c448 3465447 da38434 b05c448 384eeae b05c448 af1d89d b05c448 da38434 b05c448 3465447 b05c448 da38434 b05c448 3465447 da38434 3465447 da38434 b05c448 acfb117 b05c448 da38434 b05c448 acfb117 fa429b6 b05c448 f5ee395 b05c448 acfb117 da38434 b05c448 3465447 da38434 b05c448 3465447 b05c448 da38434 b05c448 3465447 b05c448 da38434 b05c448 3465447 b05c448 3465447 b05c448 da38434 b05c448 f5ee395 da38434 b05c448 da38434 b05c448 3465447 1d9a7e8 f45845d 3465447 da38434 1d9a7e8 b05c448 da38434 3465447 b05c448 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 |
import gradio as gr
import PyPDF2
import pandas as pd
import numpy as np
import io
import os
import json
import zipfile
import tempfile
from typing import Dict, List, Tuple, Union, Optional, Generator
import re
from pathlib import Path
import openpyxl
from dataclasses import dataclass, asdict
from enum import Enum
from docx import Document
from docx.shared import Inches, Pt, RGBColor
from docx.enum.text import WD_ALIGN_PARAGRAPH
from reportlab.lib import colors
from reportlab.lib.pagesizes import letter, A4
from reportlab.platypus import SimpleDocTemplate, Table, TableStyle, Paragraph, Spacer, PageBreak
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
from reportlab.pdfbase import pdfmetrics
from reportlab.pdfbase.ttfonts import TTFont
import matplotlib.pyplot as plt
from datetime import datetime
from openai import OpenAI
# --- CONFIGURACIÓN Y CONSTANTES ---
os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
client = OpenAI(
base_url="https://api.studio.nebius.com/v1/",
api_key=os.environ.get("NEBIUS_API_KEY")
)
# Se añade la nueva etiqueta para el selector de columna
TRANSLATIONS = {
'en': {
'title': '🧬 Scalable Biotech Model Analyzer',
'subtitle': 'Analyzes large sets of model fitting results using a chunking strategy',
'upload_files': '📁 Upload fitting results (CSV/Excel)',
'chunk_column_label': '🔬 Select Column for Grouping Experiments',
'chunk_column_info': 'Choose the column that identifies each unique experiment. This is used for chunking.',
'select_model': '🤖 IA Model (editable)',
'select_language': '🌐 Language',
'select_theme': '🎨 Theme',
'detail_level': '📋 Analysis detail level',
'detailed': 'Detailed',
'summarized': 'Summarized',
'analyze_button': '🚀 Analyze and Compare Models',
'export_format': '📄 Export format',
'export_button': '💾 Export Report',
'comparative_analysis': '📊 Comparative Analysis',
'implementation_code': '💻 Implementation Code',
'data_format': '📋 Expected data format',
'loading': 'Loading...',
'error_no_api': 'Please configure NEBIUS_API_KEY in HuggingFace Space secrets',
'error_no_files': 'Please upload fitting result files to analyze',
'report_exported': 'Report exported successfully as',
'additional_specs': '📝 Additional specifications for analysis',
'additional_specs_placeholder': 'Add any specific requirements or focus areas for the analysis...',
'output_tokens_per_chunk': '🔢 Max output tokens per chunk (1k-32k)',
'token_info': 'ℹ️ Token usage information',
'input_token_count': 'Input tokens used',
'output_token_count': 'Output tokens used',
'total_token_count': 'Total tokens used',
'token_cost': 'Estimated cost',
'thinking_process': '🧠 Thinking Process',
'analysis_report': '📊 Analysis Report',
'code_output': '💻 Implementation Code',
'token_usage': '💰 Token Usage'
},
'es': {
'title': '🧬 Analizador Escalable de Modelos Biotecnológicos',
'subtitle': 'Analiza grandes conjuntos de datos de ajuste de modelos usando una estrategia por partes',
'upload_files': '📁 Subir resultados de ajuste (CSV/Excel)',
'chunk_column_label': '🔬 Seleccionar Columna para Agrupar Experimentos',
'chunk_column_info': 'Elige la columna que identifica cada experimento único. Se usará para dividir el análisis.',
'select_model': '🤖 Modelo IA (editable)',
'select_language': '🌐 Idioma',
'select_theme': '🎨 Tema',
'detail_level': '📋 Nivel de detalle del análisis',
'detailed': 'Detallado',
'summarized': 'Resumido',
'analyze_button': '🚀 Analizar y Comparar Modelos',
'export_format': '📄 Formato de exportación',
'export_button': '💾 Exportar Reporte',
'comparative_analysis': '📊 Análisis Comparativo',
'implementation_code': '💻 Código de Implementación',
'data_format': '📋 Formato de datos esperado',
'loading': 'Cargando...',
'error_no_api': 'Por favor configura NEBIUS_API_KEY en los secretos del Space',
'error_no_files': 'Por favor sube archivos con resultados de ajuste para analizar',
'report_exported': 'Reporte exportado exitosamente como',
'additional_specs': '📝 Especificaciones adicionales para el análisis',
'additional_specs_placeholder': 'Agregue cualquier requerimiento específico o áreas de enfoque para el análisis...',
'output_tokens_per_chunk': '🔢 Max tokens de salida por pieza (1k-32k)',
'token_info': 'ℹ️ Información de uso de tokens',
'input_token_count': 'Tokens de entrada usados',
'output_token_count': 'Tokens de salida usados',
'total_token_count': 'Total de tokens usados',
'token_cost': 'Costo estimado',
'thinking_process': '🧠 Proceso de Pensamiento',
'analysis_report': '📊 Reporte de Análisis',
'code_output': '💻 Código de Implementación',
'token_usage': '💰 Uso de Tokens'
}
}
THEMES = { 'light': gr.themes.Soft(), 'dark': gr.themes.Base() }
QWEN_MODELS = {
"Qwen/Qwen3-14B": {"max_context_tokens": 40960, "input_cost": 0.0000007, "output_cost": 0.0000021},
"Qwen/Qwen3-7B": {"max_context_tokens": 40960, "input_cost": 0.00000035, "output_cost": 0.00000105},
"Qwen/Qwen1.5-14B": {"max_context_tokens": 40960, "input_cost": 0.0000007, "output_cost": 0.0000021}
}
# --- CLASES DE UTILIDAD (Se asume que existen, omitidas por brevedad) ---
class FileProcessor:
"""Clase para procesar diferentes tipos de archivos"""
@staticmethod
def extract_text_from_pdf(pdf_file) -> str:
"""Extrae texto de un archivo PDF"""
try:
pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_file))
text = ""
for page in pdf_reader.pages:
text += page.extract_text() + "\n"
return text
except Exception as e:
return f"Error reading PDF: {str(e)}"
@staticmethod
def read_csv(csv_file) -> pd.DataFrame:
"""Lee archivo CSV"""
try:
return pd.read_csv(io.BytesIO(csv_file))
except Exception as e:
return None
@staticmethod
def read_excel(excel_file) -> pd.DataFrame:
"""Lee archivo Excel"""
try:
return pd.read_excel(io.BytesIO(excel_file))
except Exception as e:
return None
@staticmethod
def extract_from_zip(zip_file) -> List[Tuple[str, bytes]]:
"""Extrae archivos de un ZIP"""
files = []
try:
with zipfile.ZipFile(io.BytesIO(zip_file), 'r') as zip_ref:
for file_name in zip_ref.namelist():
if not file_name.startswith('__MACOSX'):
file_data = zip_ref.read(file_name)
files.append((file_name, file_data))
except Exception as e:
print(f"Error processing ZIP: {e}")
return files
class ReportExporter:
"""Clase para exportar reportes a diferentes formatos"""
@staticmethod
def export_to_docx(content: str, filename: str, language: str = 'en') -> str:
"""Exporta el contenido a un archivo DOCX"""
doc = Document()
# Configurar estilos
title_style = doc.styles['Title']
title_style.font.size = Pt(24)
title_style.font.bold = True
heading_style = doc.styles['Heading 1']
heading_style.font.size = Pt(18)
heading_style.font.bold = True
# Título
title_text = {
'en': 'Comparative Analysis Report - Biotechnological Models',
'es': 'Informe de Análisis Comparativo - Modelos Biotecnológicos',
}
doc.add_heading(title_text.get(language, title_text['en']), 0)
# Fecha
date_text = {
'en': 'Generated on',
'es': 'Generado el',
}
doc.add_paragraph(f"{date_text.get(language, date_text['en'])}: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
doc.add_paragraph()
# Procesar contenido
lines = content.split('\n')
current_paragraph = None
for line in lines:
line = line.strip()
if line.startswith('###'):
doc.add_heading(line.replace('###', '').strip(), level=2)
elif line.startswith('##'):
doc.add_heading(line.replace('##', '').strip(), level=1)
elif line.startswith('#'):
doc.add_heading(line.replace('#', '').strip(), level=0)
elif line.startswith('**') and line.endswith('**'):
# Texto en negrita
p = doc.add_paragraph()
run = p.add_run(line.replace('**', ''))
run.bold = True
elif line.startswith('- ') or line.startswith('* '):
# Lista
doc.add_paragraph(line[2:], style='List Bullet')
elif line.startswith(tuple('0123456789')):
# Lista numerada
doc.add_paragraph(line, style='List Number')
elif line == '---' or line.startswith('==='):
# Separador
doc.add_paragraph('_' * 50)
elif line:
# Párrafo normal
doc.add_paragraph(line)
# Guardar documento
doc.save(filename)
return filename
@staticmethod
def export_to_pdf(content: str, filename: str, language: str = 'en') -> str:
"""Exporta el contenido a un archivo PDF"""
# Crear documento PDF
doc = SimpleDocTemplate(filename, pagesize=letter)
story = []
styles = getSampleStyleSheet()
# Estilos personalizados
title_style = ParagraphStyle(
'CustomTitle',
parent=styles['Title'],
fontSize=24,
textColor=colors.HexColor('#1f4788'),
spaceAfter=30
)
heading_style = ParagraphStyle(
'CustomHeading',
parent=styles['Heading1'],
fontSize=16,
textColor=colors.HexColor('#2e5090'),
spaceAfter=12
)
# Título
title_text = {
'en': 'Comparative Analysis Report - Biotechnological Models',
'es': 'Informe de Análisis Comparativo - Modelos Biotecnológicos',
}
story.append(Paragraph(title_text.get(language, title_text['en']), title_style))
# Fecha
date_text = {
'en': 'Generated on',
'es': 'Generado el',
}
story.append(Paragraph(f"{date_text.get(language, date_text['en'])}: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", styles['Normal']))
story.append(Spacer(1, 0.5*inch))
# Procesar contenido
lines = content.split('\n')
for line in lines:
line = line.strip()
if not line:
story.append(Spacer(1, 0.2*inch))
elif line.startswith('###'):
story.append(Paragraph(line.replace('###', '').strip(), styles['Heading3']))
elif line.startswith('##'):
story.append(Paragraph(line.replace('##', '').strip(), styles['Heading2']))
elif line.startswith('#'):
story.append(Paragraph(line.replace('#', '').strip(), heading_style))
elif line.startswith('**') and line.endswith('**'):
text = line.replace('**', '')
story.append(Paragraph(f"<b>{text}</b>", styles['Normal']))
elif line.startswith('- ') or line.startswith('* '):
story.append(Paragraph(f"• {line[2:]}", styles['Normal']))
elif line == '---' or line.startswith('==='):
story.append(Spacer(1, 0.3*inch))
story.append(Paragraph("_" * 70, styles['Normal']))
story.append(Spacer(1, 0.3*inch))
else:
# Limpiar caracteres especiales para PDF
clean_line = line.replace('📊', '[GRAPH]').replace('🎯', '[TARGET]').replace('🔍', '[SEARCH]').replace('💡', '[TIP]')
story.append(Paragraph(clean_line, styles['Normal']))
# Construir PDF
doc.build(story)
return filename
# --- CLASE AIAnalyzer (MODIFICADA PARA ACEPTAR chunk_column) ---
class AIAnalyzer:
"""Clase para análisis con IA que implementa una estrategia 'chunk-and-stitch'."""
def __init__(self, client):
self.client = client
self.token_usage = {}
self.reset_token_usage()
def reset_token_usage(self):
self.token_usage = {'input_tokens': 0, 'output_tokens': 0, 'total_tokens': 0, 'estimated_cost': 0.0}
def _update_token_usage(self, model_name: str, usage):
if not usage: return
self.token_usage['input_tokens'] += usage.prompt_tokens
self.token_usage['output_tokens'] += usage.completion_tokens
self.token_usage['total_tokens'] += usage.total_tokens
model_info = QWEN_MODELS.get(model_name, {})
input_cost = model_info.get('input_cost', 0.0)
output_cost = model_info.get('output_cost', 0.0)
self.token_usage['estimated_cost'] += (usage.prompt_tokens * input_cost) + (usage.completion_tokens * output_cost)
def _calculate_safe_max_tokens(self, model_name: str, user_requested_tokens: int) -> int:
model_info = QWEN_MODELS.get(model_name, {"max_context_tokens": 32768})
context_limit = model_info['max_context_tokens']
PROMPT_SAFETY_MARGIN = 8192
max_allowable_output = context_limit - PROMPT_SAFETY_MARGIN
return max(100, min(user_requested_tokens, max_allowable_output))
####
def _analyze_single_experiment(self, experiment_df: pd.DataFrame, experiment_id: str, qwen_model: str, lang_prefix: str, max_output_tokens: int) -> Optional[Dict]:
"""
Analiza los resultados de un único experimento (un 'chunk' de datos) y devuelve un JSON estructurado.
Esta función es el núcleo de la estrategia 'map' en el enfoque 'map-reduce'.
"""
# El prompt es la parte más importante. Está diseñado para ser muy específico y dar un ejemplo claro.
prompt = f"""
{lang_prefix}
You are an expert biotechnological data analyst. Your task is to analyze the provided model fitting results for a single experiment identified as: '{experiment_id}'.
The data contains different mathematical models that were fitted to experimental data for variables like Biomass, Substrate, or Product.
DATA FOR THIS SPECIFIC EXPERIMENT ('{experiment_id}'):
```
{experiment_df.to_string()}
```
YOUR INSTRUCTIONS:
1. **Identify Best Models**: For EACH variable type present in the data (e.g., 'Biomass', 'Substrate'), determine the single best-performing model. The best model is the one with the highest R² value. If R² values are equal, use the lowest RMSE as a tie-breaker.
2. **Extract Key Information**: For each of these best models, you must extract:
- The model's name.
- The specific metrics (R², RMSE, AIC, etc.) as key-value pairs.
- All kinetic parameters and their fitted values (e.g., mu_max, Ks) as key-value pairs.
3. **Summarize All Tested Models**: Create a simple list of the names of ALL models that were tested in this experiment, regardless of their performance.
4. **Provide Biological Interpretation**: Write a brief, concise interpretation (2-3 sentences) of what the results for this specific experiment imply. For example, "The selection of the Monod model for biomass with a µ_max of 0.45 suggests rapid growth under these conditions, while the high R² indicates a strong fit."
**CRITICAL OUTPUT FORMAT**: You MUST respond ONLY with a single, valid JSON object. Do not add any explanatory text, markdown formatting, or anything else before or after the JSON structure.
Follow this EXACT JSON structure:
{{
"experiment_id": "{experiment_id}",
"best_models_by_variable": [
{{
"variable_type": "Biomass",
"model_name": "Name of the best model for Biomass",
"metrics": {{
"R2": 0.99,
"RMSE": 0.01,
"AIC": -50.2
}},
"parameters": {{
"mu_max": 0.5,
"Ks": 10.2
}}
}},
{{
"variable_type": "Substrate",
"model_name": "Name of the best model for Substrate",
"metrics": {{
"R2": 0.98,
"RMSE": 0.05
}},
"parameters": {{
"k_consumption": 1.5
}}
}}
],
"all_tested_models": ["Monod", "Logistic", "Gompertz", "First_Order"],
"interpretation": "A brief, data-driven interpretation of the kinetic behavior observed in this specific experiment."
}}
"""
try:
# Calcular un número seguro de tokens de salida para evitar exceder el límite de contexto del modelo.
safe_max_tokens = self._calculate_safe_max_tokens(qwen_model, max_output_tokens)
# Realizar la llamada a la API de OpenAI/Nebius
response = self.client.chat.completions.create(
model=qwen_model,
max_tokens=safe_max_tokens,
temperature=0.05, # Temperatura baja para una salida más predecible y estructurada
response_format={"type": "json_object"}, # Forza la salida a ser un JSON válido
messages=[
{"role": "system", "content": "You are a helpful assistant designed to output JSON."},
{"role": "user", "content": prompt}
]
)
# Actualizar el contador de tokens y el costo estimado.
self._update_token_usage(qwen_model, response.usage)
# Extraer el contenido de la respuesta.
content = response.choices[0].message.content
# Parsear la cadena de texto JSON a un diccionario de Python.
# Este paso es propenso a errores si el LLM no sigue las instrucciones perfectamente.
parsed_json = json.loads(content)
return parsed_json
except json.JSONDecodeError as e:
# Capturar errores si la respuesta del modelo no es un JSON válido.
print(f"CRITICAL ERROR: Failed to decode JSON for experiment '{experiment_id}'.")
print(f"JSONDecodeError: {e}")
print(f"LLM Raw Output that caused the error:\n---\n{content}\n---")
return None # Devolver None para indicar que el análisis de este chunk falló.
except Exception as e:
# Capturar otros errores de la API (ej. problemas de red, clave inválida, etc.).
print(f"API Error during single analysis for experiment '{experiment_id}': {e}")
return None # Devolver None para que el proceso principal pueda saltar este chunk.
####
def _synthesize_comparative_analysis(self, individual_analyses: List[Dict], qwen_model: str, detail_level: str, lang_prefix: str, additional_specs: str, max_output_tokens: int) -> str:
"""
Sintetiza los análisis individuales (JSONs) en un reporte comparativo final en formato Markdown.
Esta es la etapa 'reduce' del proceso.
"""
# 1. Preparar los datos de entrada para el modelo.
# Convertimos la lista de diccionarios de Python a una cadena de texto JSON bien formateada.
# Esto es lo que el LLM verá como su "base de conocimiento".
analyses_summary = json.dumps(individual_analyses, indent=2)
# 2. Construir el prompt de síntesis.
# Este prompt es más conceptual que el anterior. Le pide al modelo que actúe como un científico senior.
# Sección para las especificaciones adicionales del usuario.
user_specs_section = f"""
## User's Additional Specifications
Please pay special attention to the following user-provided requirements during your analysis:
- {additional_specs}
""" if additional_specs else ""
# Instrucción de nivel de detalle basada en la selección del usuario.
detail_instruction = (
"Your report must be highly detailed and exhaustive. Include multiple tables, in-depth parameter comparisons, and nuanced biological interpretations."
if detail_level == "detailed" else
"Your report should be a high-level summary. Focus on the main conclusions and key takeaways, using concise tables and bullet points."
)
prompt = f"""
{lang_prefix}
You are a Principal Scientist tasked with creating a final, consolidated report from a series of individual experimental analyses.
You have been provided with a JSON array, where each object represents the detailed analysis of one specific experiment.
{user_specs_section}
YOUR PRIMARY OBJECTIVE:
Synthesize all the provided information into a single, cohesive, and comparative analysis report. The report must be written in rich Markdown format.
{detail_instruction}
Your final report MUST contain the following sections:
### 1. Executive Summary & Experimental Inventory
- Start with a brief paragraph summarizing the scope of the experiments analyzed.
- Create a Markdown table that serves as an inventory of all experiments. The table should list each `experiment_id`, the `variable_type` (e.g., Biomass), and the `model_name` of the best-performing model for that variable.
### 2. In-Depth Comparative Analysis
- **Model Performance Matrix:** This is the most critical part. Create a Markdown table that compares the performance of all major models across all experiments. Use R² as the primary metric. Rows should be model names, and columns should be experiment IDs. This allows for a direct visual comparison of which models are robust across different conditions.
- **Parameter Trend Analysis:** Analyze how key kinetic parameters (e.g., `mu_max`, `Ks`, etc.) change across the different experimental conditions. Discuss any observable trends, correlations, or significant differences. For example: "We observed that `mu_max` consistently increased as temperature rose from Exp_A to Exp_C, suggesting a direct correlation in this range."
- **Model Selection Justification:** Discuss why certain models performed better under specific conditions, referencing the biological interpretations from the input data.
### 3. Overall Recommendations & Conclusions
- **Globally Recommended Models:** Based on the entire dataset, declare the best overall model for each primary variable type (Biomass, Substrate, etc.). Justify your choice based on consistent high performance and robustness across experiments.
- **Condition-Specific Guidelines:** Provide actionable recommendations. For example, "For experiments conducted under high pH conditions (similar to 'Exp_C'), the 'Gompertz' model is strongly recommended due to its superior fit."
- **Suggestions for Future Research:** Briefly suggest a few next steps or potential experiments to validate the findings or explore new hypotheses.
---
**INPUT DATA: JSON ARRAY OF INDIVIDUAL ANALYSES**
```json
{analyses_summary}
```
---
Now, generate the complete, final Markdown report based on these instructions.
"""
try:
# Aumentamos el número de tokens de salida solicitados para la etapa de síntesis,
# ya que el reporte final puede ser largo. Se multiplica por 2 como heurística.
safe_max_tokens = self._calculate_safe_max_tokens(qwen_model, max_output_tokens * 2)
# Realizar la llamada a la API
response = self.client.chat.completions.create(
model=qwen_model,
max_tokens=safe_max_tokens,
temperature=0.2, # Una temperatura ligeramente más alta que en el análisis individual para permitir más creatividad en la redacción.
messages=[
{"role": "user", "content": prompt}
]
)
# Actualizar el uso de tokens y el costo.
self._update_token_usage(qwen_model, response.usage)
# Devolver el contenido del reporte generado.
return response.choices[0].message.content
except Exception as e:
# Manejar cualquier error durante la llamada a la API de síntesis.
error_message = f"CRITICAL ERROR: Failed during the final report synthesis stage. Details: {e}"
print(error_message)
return error_message
# --- DENTRO DE LA CLASE AIAnalyzer ---
def analyze_data(self, data: pd.DataFrame, chunk_column: str, qwen_model: str, detail_level: str, language: str, additional_specs: str, max_output_tokens: int) -> Generator[Union[str, Dict], None, None]:
"""
Orquesta el análisis completo como un generador, produciendo actualizaciones de estado.
"""
self.reset_token_usage()
if chunk_column not in data.columns:
yield {"error": f"The selected chunking column '{chunk_column}' was not found in the data."}
return
unique_experiments = data[chunk_column].unique()
yield f"Identified {len(unique_experiments)} groups to analyze using column '{chunk_column}': {list(unique_experiments)}"
individual_results = []
lang_prefix = "Please respond in English. " if language == 'en' else "Por favor responde en español. "
for i, exp_id in enumerate(unique_experiments):
yield f"({i+1}/{len(unique_experiments)}) Analyzing group: '{str(exp_id)}'..."
experiment_df = data[data[chunk_column] == exp_id]
result = self._analyze_single_experiment(experiment_df, str(exp_id), qwen_model, lang_prefix, max_output_tokens)
if result:
individual_results.append(result)
yield f"✅ Analysis for '{str(exp_id)}' complete."
else:
yield f"⚠️ Failed to analyze '{str(exp_id)}'. Skipping."
if not individual_results:
yield {"error": "Could not analyze any of the data groups. Please check data format and API status."}
return
yield "All groups analyzed. Synthesizing final comparative report..."
final_analysis = self._synthesize_comparative_analysis(
individual_results, qwen_model, detail_level, lang_prefix, additional_specs, max_output_tokens
)
yield "✅ Final report generated."
yield "Generating implementation code..."
code_result = "# Code generation is a placeholder in this version."
yield "✅ Code generated."
# Al final, produce el diccionario de resultados completo.
yield {
"analisis_completo": final_analysis,
"codigo_implementacion": code_result,
}
# --- FUNCIÓN DE PROCESAMIENTO PRINCIPAL ---
# --- FUNCIÓN DE PROCESAMIENTO PRINCIPAL (fuera de cualquier clase) ---
def process_files_and_analyze(files, chunk_column: str, qwen_model: str, detail_level: str, language: str, additional_specs: str, max_output_tokens: int):
"""
Procesa archivos subidos y orquesta el análisis, actualizando la UI con 'yield'.
"""
if not files:
yield "Please upload a file first.", "", "", ""
return
if not chunk_column:
yield "Please upload a file and select a column for grouping before analyzing.", "", "", ""
return
# Inicializa las variables que se irán actualizando.
thinking_log = ["### 🚀 Starting Analysis\n"]
analysis_result, code_result, token_report = "", "", ""
# Función auxiliar para actualizar el log y hacer yield a la UI
def update_log_and_yield(message):
nonlocal thinking_log
thinking_log.append(f"- {datetime.now().strftime('%H:%M:%S')}: {message}\n")
return "\n".join(thinking_log), gr.update(), gr.update(), gr.update()
yield update_log_and_yield("Processing uploaded file...")
file = files[0]
try:
df = pd.read_csv(file.name) if file.name.endswith('.csv') else pd.read_excel(file.name)
yield update_log_and_yield(f"Successfully loaded data from '{Path(file.name).name}'.")
except Exception as e:
yield update_log_and_yield(f"Error reading file: {e}")
return
# Inicia el analizador
analyzer = AIAnalyzer(client)
# Itera sobre el generador `analyze_data`
# Cada 'item' será una actualización de estado (string) o el resultado final (dict)
for item in analyzer.analyze_data(df, chunk_column, qwen_model, detail_level, language, additional_specs, max_output_tokens):
if isinstance(item, str):
# Es una actualización de estado, actualizamos el log de "thinking"
yield update_log_and_yield(item)
elif isinstance(item, dict) and "error" in item:
# Es un diccionario de error, terminamos el proceso.
yield update_log_and_yield(f"ANALYSIS FAILED: {item['error']}")
return
elif isinstance(item, dict):
# Es el diccionario de resultados final.
analysis_result = item["analisis_completo"]
code_result = item["codigo_implementacion"]
# Almacenar en el estado global para la exportación
app_state.current_analysis = analysis_result
app_state.current_code = code_result
# Formatear el reporte de tokens final
t = TRANSLATIONS[language]
token_info = analyzer.token_usage
token_report = f"""
### {t['token_info']}
- **{t['input_token_count']}:** {token_info['input_tokens']}
- **{t['output_token_count']}:** {token_info['output_tokens']}
- **{t['total_token_count']}:** {token_info['total_tokens']}
- **{t['token_cost']}:** ${token_info['estimated_cost']:.6f}
"""
# Hacemos un último yield con todos los resultados finales.
yield "\n".join(thinking_log), analysis_result, code_result, token_report
# --- ESTADO Y FUNCIONES DE UTILIDAD PARA LA UI ---
class AppState:
def __init__(self):
self.current_analysis = ""
self.current_code = ""
self.current_language = "en"
app_state = AppState()
app = None
def export_report(export_format: str, language: str) -> Tuple[str, Optional[str]]:
"""
Exporta el reporte al formato seleccionado (DOCX o PDF) usando el estado global.
Crea el archivo en un directorio temporal para evitar saturar el directorio de trabajo.
"""
# 1. Verificar si hay contenido para exportar en el estado global.
if not app_state.current_analysis:
error_msg = TRANSLATIONS[language].get('error_no_files', 'No analysis available to export.')
# Devuelve el mensaje de error y None para la ruta del archivo.
return error_msg, None
# 2. Generar un nombre de archivo único con marca de tiempo.
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
# 3. Crear un directorio temporal para almacenar el reporte.
# Esto es una buena práctica para no llenar el directorio raíz de la aplicación.
try:
temp_dir = tempfile.mkdtemp()
except Exception as e:
return f"Error creating temporary directory: {e}", None
# 4. Construir la ruta completa del archivo y llamar al exportador correspondiente.
try:
if export_format == "DOCX":
# Construye la ruta para el archivo .docx
filename = os.path.join(temp_dir, f"biotech_analysis_report_{timestamp}.docx")
# Llama al método estático de la clase ReportExporter para crear el DOCX.
# Se asume que ReportExporter está definido en otra parte del código.
ReportExporter.export_to_docx(
content=app_state.current_analysis,
filename=filename,
language=language
)
elif export_format == "PDF":
# Construye la ruta para el archivo .pdf
filename = os.path.join(temp_dir, f"biotech_analysis_report_{timestamp}.pdf")
# Llama al método estático de la clase ReportExporter para crear el PDF.
# Se asume que ReportExporter está definido en otra parte del código.
ReportExporter.export_to_pdf(
content=app_state.current_analysis,
filename=filename,
language=language
)
else:
# Manejar un caso improbable de formato no soportado.
return f"Unsupported export format: {export_format}", None
# 5. Si la creación del archivo fue exitosa, devolver un mensaje de éxito y la ruta al archivo.
success_msg_template = TRANSLATIONS[language].get('report_exported', 'Report exported successfully as')
success_msg = f"{success_msg_template} {os.path.basename(filename)}"
return success_msg, filename
except Exception as e:
# 6. Si ocurre cualquier error durante la exportación (ej. falta de permisos, error en la librería),
# capturarlo y devolver un mensaje de error claro.
error_message = f"Error during report export to {export_format}: {str(e)}"
print(f"EXPORT ERROR: {error_message}") # Loguear el error en la consola para depuración.
return error_message, None
# --- INTERFAZ GRADIU COMPLETA ---
def create_interface():
global app
def update_interface_language(language):
app_state.current_language = language
t = TRANSLATIONS[language]
return [
gr.update(value=f"# {t['title']}"), gr.update(value=t['subtitle']),
gr.update(label=t['upload_files']), gr.update(label=t['chunk_column_label'], info=t['chunk_column_info']),
gr.update(label=t['select_model']), gr.update(label=t['select_language']), gr.update(label=t['select_theme']),
gr.update(label=t['detail_level']), gr.update(choices=[(t['detailed'], "detailed"), (t['summarized'], "summarized")]),
gr.update(label=t['additional_specs'], placeholder=t['additional_specs_placeholder']),
gr.update(label=t['output_tokens_per_chunk']), gr.update(value=t['analyze_button']),
gr.update(label=t['export_format']), gr.update(value=t['export_button']),
gr.update(label=t['thinking_process']), gr.update(label=t['analysis_report']),
gr.update(label=t['code_output']), gr.update(label=t['token_usage']), gr.update(label=t['data_format'])
]
with gr.Blocks(theme=THEMES['light'], title="Scalable Biotech Analyzer") as demo:
with gr.Row():
with gr.Column(scale=3):
title_text = gr.Markdown(f"# {TRANSLATIONS['en']['title']}")
subtitle_text = gr.Markdown(TRANSLATIONS['en']['subtitle'])
with gr.Column(scale=1):
language_selector = gr.Dropdown(choices=[("English", "en"), ("Español", "es")], value="en", label="Language/Idioma")
theme_selector = gr.Dropdown(choices=["light", "dark"], value="light", label="Theme/Tema")
with gr.Row():
with gr.Column(scale=1):
files_input = gr.File(label=TRANSLATIONS['en']['upload_files'], file_count="multiple", type="filepath")
# NUEVO COMPONENTE: Selector de columna de agrupación
chunk_column_selector = gr.Dropdown(
label=TRANSLATIONS['en']['chunk_column_label'],
info=TRANSLATIONS['en']['chunk_column_info'],
interactive=False # Se activa al subir archivo
)
model_selector = gr.Textbox(label=TRANSLATIONS['en']['select_model'], value="deepseek-ai/DeepSeek-V3-0324")
detail_level_radio = gr.Radio(choices=[("Detailed", "detailed"), ("Summarized", "summarized")], value="detailed", label=TRANSLATIONS['en']['detail_level'])
additional_specs = gr.Textbox(label=TRANSLATIONS['en']['additional_specs'], placeholder=TRANSLATIONS['en']['additional_specs_placeholder'], lines=3)
output_tokens_slider = gr.Slider(minimum=1000, maximum=32000, value=4000, step=500, label=TRANSLATIONS['en']['output_tokens_per_chunk'])
analyze_btn = gr.Button(TRANSLATIONS['en']['analyze_button'], variant="primary", interactive=False) # Desactivado por defecto
gr.Markdown("---")
export_format_radio = gr.Radio(choices=["DOCX", "PDF"], value="PDF", label=TRANSLATIONS['en']['export_format'])
export_btn = gr.Button(TRANSLATIONS['en']['export_button'])
export_status = gr.Textbox(label="Export Status", visible=False)
export_file = gr.File(label="Download Report", visible=False)
with gr.Column(scale=2):
thinking_output = gr.Markdown(label=TRANSLATIONS['en']['thinking_process'])
analysis_output = gr.Markdown(label=TRANSLATIONS['en']['analysis_report'])
code_output = gr.Code(label=TRANSLATIONS['en']['code_output'], language="python")
token_usage_output = gr.Markdown(label=TRANSLATIONS['en']['token_usage'])
data_format_accordion = gr.Accordion(label=TRANSLATIONS['en']['data_format'], open=False)
with data_format_accordion:
gr.Markdown("""...""") # Contenido del acordeón sin cambios
# --- LÓGICA DE EVENTOS DE LA UI ---
# NUEVO EVENTO: Se activa al subir un archivo para poblar el selector de columna
def update_chunk_column_selector(files):
if not files:
return gr.update(choices=[], value=None, interactive=False), gr.update(interactive=False)
try:
file_path = files[0].name
df = pd.read_csv(file_path, nrows=0) if file_path.endswith('.csv') else pd.read_excel(file_path, nrows=0)
columns = df.columns.tolist()
# Intenta encontrar una columna por defecto
default_candidates = ['Experiment', 'Experimento', 'Condition', 'Run', 'Batch', 'ID']
default_selection = next((col for col in default_candidates if col in columns), None)
return gr.update(choices=columns, value=default_selection, interactive=True), gr.update(interactive=True)
except Exception as e:
gr.Warning(f"Could not read columns from file: {e}")
return gr.update(choices=[], value=None, interactive=False), gr.update(interactive=False)
files_input.upload(
fn=update_chunk_column_selector,
inputs=[files_input],
outputs=[chunk_column_selector, analyze_btn]
)
analyze_btn.click(
fn=process_files_and_analyze,
inputs=[files_input, chunk_column_selector, model_selector, detail_level_radio, language_selector, additional_specs, output_tokens_slider],
outputs=[thinking_output, analysis_output, code_output, token_usage_output]
)
# Eventos de idioma y exportación (sin cambios)
language_selector.change(
fn=update_interface_language,
inputs=[language_selector],
outputs=[title_text, subtitle_text, files_input, chunk_column_selector, model_selector, language_selector, theme_selector, detail_level_radio, detail_level_radio, additional_specs, output_tokens_slider, analyze_btn, export_format_radio, export_btn, thinking_output, analysis_output, code_output, token_usage_output, data_format_accordion]
)
export_btn.click(fn=export_report, inputs=[export_format_radio, language_selector], outputs=[export_status, export_file])
app = demo
return demo
# --- FUNCIÓN PRINCIPAL DE EJECUCIÓN ---
def main():
if not os.getenv("NEBIUS_API_KEY"):
return gr.Interface(lambda: TRANSLATIONS['en']['error_no_api'], [], gr.Textbox(label="Configuration Error"))
return create_interface()
if __name__ == "__main__":
demo = main()
if demo:
print("===== Application Startup =====")
demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=False, inbrowser=True) |