Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import PyPDF2
|
3 |
import pandas as pd
|
4 |
import numpy as np
|
@@ -25,24 +26,20 @@ from reportlab.pdfbase import pdfmetrics
|
|
25 |
from reportlab.pdfbase.ttfonts import TTFont
|
26 |
import matplotlib.pyplot as plt
|
27 |
from datetime import datetime
|
28 |
-
from openai import OpenAI
|
29 |
|
30 |
# Configuración para HuggingFace
|
31 |
os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
|
32 |
|
33 |
-
# Inicializar cliente
|
34 |
-
client =
|
35 |
-
base_url="https://api.studio.nebius.com/v1/",
|
36 |
-
api_key=os.environ.get("NEBIUS_API_KEY")
|
37 |
-
)
|
38 |
|
39 |
-
# Sistema de traducción
|
40 |
TRANSLATIONS = {
|
41 |
'en': {
|
42 |
'title': '🧬 Comparative Analyzer of Biotechnological Models',
|
43 |
'subtitle': 'Specialized in comparative analysis of mathematical model fitting results',
|
44 |
'upload_files': '📁 Upload fitting results (CSV/Excel)',
|
45 |
-
'select_model': '🤖
|
46 |
'select_language': '🌐 Language',
|
47 |
'select_theme': '🎨 Theme',
|
48 |
'detail_level': '📋 Analysis detail level',
|
@@ -59,7 +56,7 @@ TRANSLATIONS = {
|
|
59 |
'dark': 'Dark',
|
60 |
'best_for': 'Best for',
|
61 |
'loading': 'Loading...',
|
62 |
-
'error_no_api': 'Please configure
|
63 |
'error_no_files': 'Please upload fitting result files to analyze',
|
64 |
'report_exported': 'Report exported successfully as',
|
65 |
'specialized_in': '🎯 Specialized in:',
|
@@ -67,24 +64,13 @@ TRANSLATIONS = {
|
|
67 |
'what_analyzes': '🔍 What it specifically analyzes:',
|
68 |
'tips': '💡 Tips for better results:',
|
69 |
'additional_specs': '📝 Additional specifications for analysis',
|
70 |
-
'additional_specs_placeholder': 'Add any specific requirements or focus areas for the analysis...'
|
71 |
-
'input_tokens': '🔢 Input tokens (0-1M)',
|
72 |
-
'output_tokens': '🔢 Output tokens (0-1M)',
|
73 |
-
'token_info': 'ℹ️ Token usage information',
|
74 |
-
'input_token_count': 'Input tokens used',
|
75 |
-
'output_token_count': 'Output tokens used',
|
76 |
-
'total_token_count': 'Total tokens used',
|
77 |
-
'token_cost': 'Estimated cost',
|
78 |
-
'thinking_process': '🧠 Thinking Process',
|
79 |
-
'analysis_report': '📊 Analysis Report',
|
80 |
-
'code_output': '💻 Implementation Code',
|
81 |
-
'token_usage': '💰 Token Usage'
|
82 |
},
|
83 |
'es': {
|
84 |
'title': '🧬 Analizador Comparativo de Modelos Biotecnológicos',
|
85 |
'subtitle': 'Especializado en análisis comparativo de resultados de ajuste de modelos matemáticos',
|
86 |
'upload_files': '📁 Subir resultados de ajuste (CSV/Excel)',
|
87 |
-
'select_model': '🤖 Modelo
|
88 |
'select_language': '🌐 Idioma',
|
89 |
'select_theme': '🎨 Tema',
|
90 |
'detail_level': '📋 Nivel de detalle del análisis',
|
@@ -101,7 +87,7 @@ TRANSLATIONS = {
|
|
101 |
'dark': 'Oscuro',
|
102 |
'best_for': 'Mejor para',
|
103 |
'loading': 'Cargando...',
|
104 |
-
'error_no_api': 'Por favor configura
|
105 |
'error_no_files': 'Por favor sube archivos con resultados de ajuste para analizar',
|
106 |
'report_exported': 'Reporte exportado exitosamente como',
|
107 |
'specialized_in': '🎯 Especializado en:',
|
@@ -109,18 +95,100 @@ TRANSLATIONS = {
|
|
109 |
'what_analyzes': '🔍 Qué analiza específicamente:',
|
110 |
'tips': '💡 Tips para mejores resultados:',
|
111 |
'additional_specs': '📝 Especificaciones adicionales para el análisis',
|
112 |
-
'additional_specs_placeholder': 'Agregue cualquier requerimiento específico o áreas de enfoque para el análisis...'
|
113 |
-
|
114 |
-
|
115 |
-
'
|
116 |
-
'
|
117 |
-
'
|
118 |
-
'
|
119 |
-
'
|
120 |
-
'
|
121 |
-
'
|
122 |
-
'
|
123 |
-
'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
}
|
125 |
}
|
126 |
|
@@ -224,31 +292,37 @@ class ModelRegistry:
|
|
224 |
# Instancia global del registro
|
225 |
model_registry = ModelRegistry()
|
226 |
|
227 |
-
# Modelos de
|
228 |
-
|
229 |
-
"
|
230 |
-
"name": "
|
231 |
-
"description": "Modelo potente
|
232 |
-
"max_tokens":
|
233 |
-
"best_for": "Análisis
|
234 |
-
"input_cost": 0.0000007,
|
235 |
-
"output_cost": 0.0000021
|
236 |
},
|
237 |
-
"
|
238 |
-
"name": "
|
239 |
-
"description": "Modelo
|
240 |
-
"max_tokens":
|
241 |
-
"best_for": "Análisis
|
242 |
-
"input_cost": 0.00000035,
|
243 |
-
"output_cost": 0.00000105
|
244 |
},
|
245 |
-
"
|
246 |
-
"name": "
|
247 |
-
"description": "Modelo
|
248 |
-
"max_tokens":
|
249 |
-
"best_for": "Análisis
|
250 |
-
|
251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
}
|
253 |
}
|
254 |
|
@@ -318,6 +392,9 @@ class ReportExporter:
|
|
318 |
title_text = {
|
319 |
'en': 'Comparative Analysis Report - Biotechnological Models',
|
320 |
'es': 'Informe de Análisis Comparativo - Modelos Biotecnológicos',
|
|
|
|
|
|
|
321 |
}
|
322 |
|
323 |
doc.add_heading(title_text.get(language, title_text['en']), 0)
|
@@ -326,6 +403,9 @@ class ReportExporter:
|
|
326 |
date_text = {
|
327 |
'en': 'Generated on',
|
328 |
'es': 'Generado el',
|
|
|
|
|
|
|
329 |
}
|
330 |
doc.add_paragraph(f"{date_text.get(language, date_text['en'])}: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
331 |
doc.add_paragraph()
|
@@ -394,6 +474,9 @@ class ReportExporter:
|
|
394 |
title_text = {
|
395 |
'en': 'Comparative Analysis Report - Biotechnological Models',
|
396 |
'es': 'Informe de Análisis Comparativo - Modelos Biotecnológicos',
|
|
|
|
|
|
|
397 |
}
|
398 |
|
399 |
story.append(Paragraph(title_text.get(language, title_text['en']), title_style))
|
@@ -402,6 +485,9 @@ class ReportExporter:
|
|
402 |
date_text = {
|
403 |
'en': 'Generated on',
|
404 |
'es': 'Generado el',
|
|
|
|
|
|
|
405 |
}
|
406 |
story.append(Paragraph(f"{date_text.get(language, date_text['en'])}: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", styles['Normal']))
|
407 |
story.append(Spacer(1, 0.5*inch))
|
@@ -439,28 +525,13 @@ class ReportExporter:
|
|
439 |
return filename
|
440 |
|
441 |
class AIAnalyzer:
|
442 |
-
"""Clase para análisis con IA
|
443 |
|
444 |
def __init__(self, client, model_registry):
|
445 |
self.client = client
|
446 |
self.model_registry = model_registry
|
447 |
-
self.token_usage = {
|
448 |
-
'input_tokens': 0,
|
449 |
-
'output_tokens': 0,
|
450 |
-
'total_tokens': 0,
|
451 |
-
'estimated_cost': 0.0
|
452 |
-
}
|
453 |
|
454 |
-
def
|
455 |
-
"""Reinicia el contador de tokens"""
|
456 |
-
self.token_usage = {
|
457 |
-
'input_tokens': 0,
|
458 |
-
'output_tokens': 0,
|
459 |
-
'total_tokens': 0,
|
460 |
-
'estimated_cost': 0.0
|
461 |
-
}
|
462 |
-
|
463 |
-
def detect_analysis_type(self, content: Union[str, pd.DataFrame], max_tokens: int = 1000) -> AnalysisType:
|
464 |
"""Detecta el tipo de análisis necesario"""
|
465 |
if isinstance(content, pd.DataFrame):
|
466 |
columns = [col.lower() for col in content.columns]
|
@@ -489,20 +560,13 @@ class AIAnalyzer:
|
|
489 |
"""
|
490 |
|
491 |
try:
|
492 |
-
response = self.client.
|
493 |
-
model="
|
494 |
-
max_tokens=
|
495 |
-
|
496 |
-
messages=[{"role": "user", "content": f"{prompt}\n\n{content[:10000]}"}]
|
497 |
)
|
498 |
|
499 |
-
|
500 |
-
if response.usage:
|
501 |
-
self.token_usage['input_tokens'] += response.usage.prompt_tokens
|
502 |
-
self.token_usage['output_tokens'] += response.usage.completion_tokens
|
503 |
-
self.token_usage['total_tokens'] += response.usage.total_tokens
|
504 |
-
|
505 |
-
result = response.choices[0].message.content.strip().upper()
|
506 |
if "MODEL" in result:
|
507 |
return AnalysisType.MATHEMATICAL_MODEL
|
508 |
elif "RESULTS" in result:
|
@@ -512,8 +576,7 @@ class AIAnalyzer:
|
|
512 |
else:
|
513 |
return AnalysisType.UNKNOWN
|
514 |
|
515 |
-
except
|
516 |
-
print(f"Error en detección de tipo: {str(e)}")
|
517 |
return AnalysisType.UNKNOWN
|
518 |
|
519 |
def get_language_prompt_prefix(self, language: str) -> str:
|
@@ -521,13 +584,15 @@ class AIAnalyzer:
|
|
521 |
prefixes = {
|
522 |
'en': "Please respond in English. ",
|
523 |
'es': "Por favor responde en español. ",
|
|
|
|
|
|
|
524 |
}
|
525 |
return prefixes.get(language, prefixes['en'])
|
526 |
|
527 |
-
def analyze_fitting_results(self, data: pd.DataFrame,
|
528 |
-
language: str = "en", additional_specs: str = ""
|
529 |
-
|
530 |
-
"""Analiza resultados de ajuste de modelos usando Qwen"""
|
531 |
|
532 |
# Preparar resumen completo de los datos
|
533 |
data_summary = f"""
|
@@ -537,10 +602,16 @@ class AIAnalyzer:
|
|
537 |
- Columns: {list(data.columns)}
|
538 |
- Number of models evaluated: {len(data)}
|
539 |
|
540 |
-
Complete data
|
541 |
-
{data.
|
|
|
|
|
|
|
542 |
"""
|
543 |
|
|
|
|
|
|
|
544 |
# Obtener prefijo de idioma
|
545 |
lang_prefix = self.get_language_prompt_prefix(language)
|
546 |
|
@@ -700,32 +771,21 @@ class AIAnalyzer:
|
|
700 |
"""
|
701 |
|
702 |
try:
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
max_tokens=min(max_output_tokens, 100000),
|
707 |
-
temperature=0.3,
|
708 |
messages=[{
|
709 |
"role": "user",
|
710 |
"content": f"{prompt}\n\n{data_summary}"
|
711 |
}]
|
712 |
)
|
713 |
|
714 |
-
#
|
715 |
-
if response.usage:
|
716 |
-
self.token_usage['input_tokens'] += response.usage.prompt_tokens
|
717 |
-
self.token_usage['output_tokens'] += response.usage.completion_tokens
|
718 |
-
self.token_usage['total_tokens'] += response.usage.total_tokens
|
719 |
-
self.token_usage['estimated_cost'] = self.calculate_cost(qwen_model, response.usage)
|
720 |
-
|
721 |
-
analysis_result = response.choices[0].message.content
|
722 |
-
|
723 |
-
# Generación de código
|
724 |
code_prompt = f"""
|
725 |
{lang_prefix}
|
726 |
|
727 |
Based on the analysis and this actual data:
|
728 |
-
{data.
|
729 |
|
730 |
Generate Python code that:
|
731 |
|
@@ -752,29 +812,19 @@ class AIAnalyzer:
|
|
752 |
Format: Complete, executable Python code with actual data values embedded.
|
753 |
"""
|
754 |
|
755 |
-
code_response = self.client.
|
756 |
-
model=
|
757 |
-
max_tokens=
|
758 |
-
temperature=0.1,
|
759 |
messages=[{
|
760 |
"role": "user",
|
761 |
"content": code_prompt
|
762 |
}]
|
763 |
)
|
764 |
|
765 |
-
# Registrar uso de tokens
|
766 |
-
if code_response.usage:
|
767 |
-
self.token_usage['input_tokens'] += code_response.usage.prompt_tokens
|
768 |
-
self.token_usage['output_tokens'] += code_response.usage.completion_tokens
|
769 |
-
self.token_usage['total_tokens'] += code_response.usage.total_tokens
|
770 |
-
self.token_usage['estimated_cost'] += self.calculate_cost(qwen_model, code_response.usage)
|
771 |
-
|
772 |
-
code_result = code_response.choices[0].message.content
|
773 |
-
|
774 |
return {
|
775 |
"tipo": "Comparative Analysis of Mathematical Models",
|
776 |
-
"analisis_completo":
|
777 |
-
"codigo_implementacion":
|
778 |
"resumen_datos": {
|
779 |
"n_modelos": len(data),
|
780 |
"columnas": list(data.columns),
|
@@ -782,35 +832,20 @@ class AIAnalyzer:
|
|
782 |
for metric in ['r2', 'rmse', 'aic', 'bic', 'mse'])],
|
783 |
"mejor_r2": data['R2'].max() if 'R2' in data.columns else None,
|
784 |
"mejor_modelo_r2": data.loc[data['R2'].idxmax()]['Model'] if 'R2' in data.columns and 'Model' in data.columns else None,
|
|
|
785 |
}
|
786 |
}
|
787 |
|
788 |
except Exception as e:
|
789 |
-
print(f"Error en análisis: {str(e)}")
|
790 |
return {"error": str(e)}
|
791 |
-
|
792 |
-
def calculate_cost(self, model_name: str, usage) -> float:
|
793 |
-
"""Calcula el costo estimado en dólares"""
|
794 |
-
if model_name not in QWEN_MODELS:
|
795 |
-
return 0.0
|
796 |
-
|
797 |
-
model_info = QWEN_MODELS[model_name]
|
798 |
-
input_cost = model_info.get('input_cost', 0.0)
|
799 |
-
output_cost = model_info.get('output_cost', 0.0)
|
800 |
-
|
801 |
-
return (usage.prompt_tokens * input_cost) + (usage.completion_tokens * output_cost)
|
802 |
|
803 |
-
def process_files(files,
|
804 |
-
language: str = "en", additional_specs: str = "",
|
805 |
-
|
806 |
-
"""Procesa múltiples archivos usando Qwen"""
|
807 |
processor = FileProcessor()
|
808 |
analyzer = AIAnalyzer(client, model_registry)
|
809 |
-
analyzer.reset_token_usage()
|
810 |
-
|
811 |
results = []
|
812 |
all_code = []
|
813 |
-
thinking_process = []
|
814 |
|
815 |
for file in files:
|
816 |
if file is None:
|
@@ -825,26 +860,20 @@ def process_files(files, qwen_model: str, detail_level: str = "detailed",
|
|
825 |
if file_ext in ['.csv', '.xlsx', '.xls']:
|
826 |
if language == 'es':
|
827 |
results.append(f"## 📊 Análisis de Resultados: {file_name}")
|
828 |
-
thinking_process.append(f"### 🔍 Procesando archivo: {file_name}")
|
829 |
else:
|
830 |
results.append(f"## 📊 Results Analysis: {file_name}")
|
831 |
-
thinking_process.append(f"### 🔍 Processing file: {file_name}")
|
832 |
|
833 |
if file_ext == '.csv':
|
834 |
df = processor.read_csv(file_content)
|
835 |
-
thinking_process.append("✅ Archivo CSV leído correctamente" if language == 'es' else "✅ CSV file read successfully")
|
836 |
else:
|
837 |
df = processor.read_excel(file_content)
|
838 |
-
thinking_process.append("✅ Archivo Excel leído correctamente" if language == 'es' else "✅ Excel file read successfully")
|
839 |
|
840 |
if df is not None:
|
841 |
-
analysis_type = analyzer.detect_analysis_type(df
|
842 |
-
thinking_process.append(f"🔎 Tipo de análisis detectado: {analysis_type.value}" if language == 'es' else f"🔎 Analysis type detected: {analysis_type.value}")
|
843 |
|
844 |
if analysis_type == AnalysisType.FITTING_RESULTS:
|
845 |
result = analyzer.analyze_fitting_results(
|
846 |
-
df,
|
847 |
-
max_input_tokens, max_output_tokens
|
848 |
)
|
849 |
|
850 |
if language == 'es':
|
@@ -857,56 +886,367 @@ def process_files(files, qwen_model: str, detail_level: str = "detailed",
|
|
857 |
all_code.append(result["codigo_implementacion"])
|
858 |
|
859 |
results.append("\n---\n")
|
860 |
-
thinking_process.append("\n---\n")
|
861 |
|
862 |
analysis_text = "\n".join(results)
|
863 |
code_text = "\n\n# " + "="*50 + "\n\n".join(all_code) if all_code else generate_implementation_code(analysis_text)
|
864 |
-
thinking_text = "\n".join(thinking_process)
|
865 |
|
866 |
-
|
867 |
-
token_info = analyzer.token_usage
|
868 |
-
if language == 'es':
|
869 |
-
thinking_text += f"""
|
870 |
-
|
871 |
-
### 💰 USO DE TOKENS
|
872 |
-
- Tokens de entrada usados: {token_info['input_tokens']}
|
873 |
-
- Tokens de salida usados: {token_info['output_tokens']}
|
874 |
-
- Total de tokens: {token_info['total_tokens']}
|
875 |
-
- Costo estimado: ${token_info['estimated_cost']:.6f}
|
876 |
-
"""
|
877 |
-
else:
|
878 |
-
thinking_text += f"""
|
879 |
-
|
880 |
-
### 💰 TOKEN USAGE
|
881 |
-
- Input tokens used: {token_info['input_tokens']}
|
882 |
-
- Output tokens used: {token_info['output_tokens']}
|
883 |
-
- Total tokens: {token_info['total_tokens']}
|
884 |
-
- Estimated cost: ${token_info['estimated_cost']:.6f}
|
885 |
-
"""
|
886 |
-
|
887 |
-
return thinking_text, analysis_text, code_text, token_info
|
888 |
|
889 |
def generate_implementation_code(analysis_results: str) -> str:
|
890 |
"""Genera código de implementación con análisis por experimento"""
|
891 |
-
|
892 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
893 |
|
894 |
# Estado global para almacenar resultados
|
895 |
class AppState:
|
896 |
def __init__(self):
|
897 |
-
self.current_thinking = ""
|
898 |
self.current_analysis = ""
|
899 |
self.current_code = ""
|
900 |
self.current_language = "en"
|
901 |
-
self.token_usage = {}
|
902 |
|
903 |
app_state = AppState()
|
904 |
|
905 |
def export_report(export_format: str, language: str) -> Tuple[str, str]:
|
906 |
"""Exporta el reporte al formato seleccionado"""
|
907 |
if not app_state.current_analysis:
|
908 |
-
error_msg =
|
909 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
910 |
|
911 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
912 |
|
@@ -943,47 +1283,26 @@ def create_interface():
|
|
943 |
gr.update(label=t['select_theme']), # theme_selector
|
944 |
gr.update(label=t['detail_level']), # detail_level
|
945 |
gr.update(label=t['additional_specs'], placeholder=t['additional_specs_placeholder']), # additional_specs
|
946 |
-
gr.update(label=t['input_tokens']), # input_tokens_slider
|
947 |
-
gr.update(label=t['output_tokens']), # output_tokens_slider
|
948 |
gr.update(value=t['analyze_button']), # analyze_btn
|
949 |
gr.update(label=t['export_format']), # export_format
|
950 |
gr.update(value=t['export_button']), # export_btn
|
951 |
-
gr.update(label=t['
|
952 |
-
gr.update(label=t['
|
953 |
-
gr.update(label=t['code_output']), # code_output
|
954 |
-
gr.update(label=t['token_usage']), # token_usage_output
|
955 |
gr.update(label=t['data_format']) # data_format_accordion
|
956 |
]
|
957 |
|
958 |
-
def process_and_store(files, model, detail, language, additional_specs
|
959 |
"""Procesa archivos y almacena resultados"""
|
960 |
if not files:
|
961 |
error_msg = TRANSLATIONS[language]['error_no_files']
|
962 |
-
return error_msg, ""
|
963 |
-
|
964 |
-
thinking, analysis, code, token_usage = process_files(
|
965 |
-
files, model, detail, language, additional_specs,
|
966 |
-
input_tokens, output_tokens
|
967 |
-
)
|
968 |
|
969 |
-
|
970 |
app_state.current_analysis = analysis
|
971 |
app_state.current_code = code
|
972 |
-
|
973 |
-
|
974 |
-
# Formatear información de tokens
|
975 |
-
t = TRANSLATIONS[language]
|
976 |
-
token_info = f"""
|
977 |
-
### {t['token_info']}
|
978 |
-
- **{t['input_token_count']}:** {token_usage['input_tokens']}
|
979 |
-
- **{t['output_token_count']}:** {token_usage['output_tokens']}
|
980 |
-
- **{t['total_token_count']}:** {token_usage['total_tokens']}
|
981 |
-
- **{t['token_cost']}:** ${token_usage['estimated_cost']:.6f}
|
982 |
-
"""
|
983 |
-
|
984 |
-
return thinking, analysis, code, token_info
|
985 |
|
986 |
-
with gr.Blocks(theme=THEMES[current_theme]
|
987 |
# Componentes de UI
|
988 |
with gr.Row():
|
989 |
with gr.Column(scale=3):
|
@@ -992,7 +1311,8 @@ def create_interface():
|
|
992 |
with gr.Column(scale=1):
|
993 |
with gr.Row():
|
994 |
language_selector = gr.Dropdown(
|
995 |
-
choices=[("English", "en"), ("Español", "es")
|
|
|
996 |
value="en",
|
997 |
label=TRANSLATIONS[current_language]['select_language'],
|
998 |
interactive=True
|
@@ -1014,10 +1334,10 @@ def create_interface():
|
|
1014 |
)
|
1015 |
|
1016 |
model_selector = gr.Dropdown(
|
1017 |
-
choices=list(
|
1018 |
-
value="
|
1019 |
label=TRANSLATIONS[current_language]['select_model'],
|
1020 |
-
info=f"{TRANSLATIONS[current_language]['best_for']}: {
|
1021 |
)
|
1022 |
|
1023 |
detail_level = gr.Radio(
|
@@ -1029,6 +1349,7 @@ def create_interface():
|
|
1029 |
label=TRANSLATIONS[current_language]['detail_level']
|
1030 |
)
|
1031 |
|
|
|
1032 |
additional_specs = gr.Textbox(
|
1033 |
label=TRANSLATIONS[current_language]['additional_specs'],
|
1034 |
placeholder=TRANSLATIONS[current_language]['additional_specs_placeholder'],
|
@@ -1037,25 +1358,6 @@ def create_interface():
|
|
1037 |
interactive=True
|
1038 |
)
|
1039 |
|
1040 |
-
# Nuevos sliders para tokens
|
1041 |
-
input_tokens_slider = gr.Slider(
|
1042 |
-
minimum=1000,
|
1043 |
-
maximum=1000000,
|
1044 |
-
value=10000,
|
1045 |
-
step=1000,
|
1046 |
-
label=TRANSLATIONS[current_language]['input_tokens'],
|
1047 |
-
info="Máximo tokens para entrada (0-1 millón)"
|
1048 |
-
)
|
1049 |
-
|
1050 |
-
output_tokens_slider = gr.Slider(
|
1051 |
-
minimum=1000,
|
1052 |
-
maximum=1000000,
|
1053 |
-
value=30000,
|
1054 |
-
step=1000,
|
1055 |
-
label=TRANSLATIONS[current_language]['output_tokens'],
|
1056 |
-
info="Máximo tokens para salida (0-1 millón)"
|
1057 |
-
)
|
1058 |
-
|
1059 |
analyze_btn = gr.Button(
|
1060 |
TRANSLATIONS[current_language]['analyze_button'],
|
1061 |
variant="primary",
|
@@ -1087,24 +1389,15 @@ def create_interface():
|
|
1087 |
)
|
1088 |
|
1089 |
with gr.Column(scale=2):
|
1090 |
-
# Nuevos outputs separados
|
1091 |
-
thinking_output = gr.Markdown(
|
1092 |
-
label=TRANSLATIONS[current_language]['thinking_process']
|
1093 |
-
)
|
1094 |
-
|
1095 |
analysis_output = gr.Markdown(
|
1096 |
-
label=TRANSLATIONS[current_language]['
|
1097 |
)
|
1098 |
|
1099 |
code_output = gr.Code(
|
1100 |
-
label=TRANSLATIONS[current_language]['
|
1101 |
language="python",
|
1102 |
interactive=True,
|
1103 |
-
lines=
|
1104 |
-
)
|
1105 |
-
|
1106 |
-
token_usage_output = gr.Markdown(
|
1107 |
-
label=TRANSLATIONS[current_language]['token_usage']
|
1108 |
)
|
1109 |
|
1110 |
data_format_accordion = gr.Accordion(
|
@@ -1131,21 +1424,32 @@ def create_interface():
|
|
1131 |
- **Parameters**: Model-specific parameters
|
1132 |
""")
|
1133 |
|
1134 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1135 |
language_selector.change(
|
1136 |
update_interface_language,
|
1137 |
inputs=[language_selector],
|
1138 |
outputs=[
|
1139 |
title_text, subtitle_text, files_input, model_selector,
|
1140 |
language_selector, theme_selector, detail_level, additional_specs,
|
1141 |
-
|
1142 |
-
|
1143 |
-
token_usage_output, data_format_accordion
|
1144 |
]
|
1145 |
)
|
1146 |
|
1147 |
def change_theme(theme_name):
|
1148 |
"""Cambia el tema de la interfaz"""
|
|
|
|
|
1149 |
return gr.Info("Theme will be applied on next page load")
|
1150 |
|
1151 |
theme_selector.change(
|
@@ -1156,9 +1460,8 @@ def create_interface():
|
|
1156 |
|
1157 |
analyze_btn.click(
|
1158 |
fn=process_and_store,
|
1159 |
-
inputs=[files_input, model_selector, detail_level, language_selector,
|
1160 |
-
|
1161 |
-
outputs=[thinking_output, analysis_output, code_output, token_usage_output]
|
1162 |
)
|
1163 |
|
1164 |
def handle_export(format, language):
|
@@ -1178,8 +1481,8 @@ def create_interface():
|
|
1178 |
|
1179 |
# Función principal
|
1180 |
def main():
|
1181 |
-
if not os.getenv("
|
1182 |
-
print("⚠️ Configure
|
1183 |
return gr.Interface(
|
1184 |
fn=lambda x: TRANSLATIONS['en']['error_no_api'],
|
1185 |
inputs=gr.Textbox(),
|
|
|
1 |
import gradio as gr
|
2 |
+
import anthropic
|
3 |
import PyPDF2
|
4 |
import pandas as pd
|
5 |
import numpy as np
|
|
|
26 |
from reportlab.pdfbase.ttfonts import TTFont
|
27 |
import matplotlib.pyplot as plt
|
28 |
from datetime import datetime
|
|
|
29 |
|
30 |
# Configuración para HuggingFace
|
31 |
os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
|
32 |
|
33 |
+
# Inicializar cliente Anthropic
|
34 |
+
client = anthropic.Anthropic()
|
|
|
|
|
|
|
35 |
|
36 |
+
# Sistema de traducción - Actualizado con nuevas entradas
|
37 |
TRANSLATIONS = {
|
38 |
'en': {
|
39 |
'title': '🧬 Comparative Analyzer of Biotechnological Models',
|
40 |
'subtitle': 'Specialized in comparative analysis of mathematical model fitting results',
|
41 |
'upload_files': '📁 Upload fitting results (CSV/Excel)',
|
42 |
+
'select_model': '🤖 Claude Model',
|
43 |
'select_language': '🌐 Language',
|
44 |
'select_theme': '🎨 Theme',
|
45 |
'detail_level': '📋 Analysis detail level',
|
|
|
56 |
'dark': 'Dark',
|
57 |
'best_for': 'Best for',
|
58 |
'loading': 'Loading...',
|
59 |
+
'error_no_api': 'Please configure ANTHROPIC_API_KEY in HuggingFace Space secrets',
|
60 |
'error_no_files': 'Please upload fitting result files to analyze',
|
61 |
'report_exported': 'Report exported successfully as',
|
62 |
'specialized_in': '🎯 Specialized in:',
|
|
|
64 |
'what_analyzes': '🔍 What it specifically analyzes:',
|
65 |
'tips': '💡 Tips for better results:',
|
66 |
'additional_specs': '📝 Additional specifications for analysis',
|
67 |
+
'additional_specs_placeholder': 'Add any specific requirements or focus areas for the analysis...'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
},
|
69 |
'es': {
|
70 |
'title': '🧬 Analizador Comparativo de Modelos Biotecnológicos',
|
71 |
'subtitle': 'Especializado en análisis comparativo de resultados de ajuste de modelos matemáticos',
|
72 |
'upload_files': '📁 Subir resultados de ajuste (CSV/Excel)',
|
73 |
+
'select_model': '🤖 Modelo Claude',
|
74 |
'select_language': '🌐 Idioma',
|
75 |
'select_theme': '🎨 Tema',
|
76 |
'detail_level': '📋 Nivel de detalle del análisis',
|
|
|
87 |
'dark': 'Oscuro',
|
88 |
'best_for': 'Mejor para',
|
89 |
'loading': 'Cargando...',
|
90 |
+
'error_no_api': 'Por favor configura ANTHROPIC_API_KEY en los secretos del Space',
|
91 |
'error_no_files': 'Por favor sube archivos con resultados de ajuste para analizar',
|
92 |
'report_exported': 'Reporte exportado exitosamente como',
|
93 |
'specialized_in': '🎯 Especializado en:',
|
|
|
95 |
'what_analyzes': '🔍 Qué analiza específicamente:',
|
96 |
'tips': '💡 Tips para mejores resultados:',
|
97 |
'additional_specs': '📝 Especificaciones adicionales para el análisis',
|
98 |
+
'additional_specs_placeholder': 'Agregue cualquier requerimiento específico o áreas de enfoque para el análisis...'
|
99 |
+
},
|
100 |
+
'fr': {
|
101 |
+
'title': '🧬 Analyseur Comparatif de Modèles Biotechnologiques',
|
102 |
+
'subtitle': 'Spécialisé dans l\'analyse comparative des résultats d\'ajustement',
|
103 |
+
'upload_files': '📁 Télécharger les résultats (CSV/Excel)',
|
104 |
+
'select_model': '🤖 Modèle Claude',
|
105 |
+
'select_language': '🌐 Langue',
|
106 |
+
'select_theme': '🎨 Thème',
|
107 |
+
'detail_level': '📋 Niveau de détail',
|
108 |
+
'detailed': 'Détaillé',
|
109 |
+
'summarized': 'Résumé',
|
110 |
+
'analyze_button': '🚀 Analyser et Comparer',
|
111 |
+
'export_format': '📄 Format d\'export',
|
112 |
+
'export_button': '💾 Exporter le Rapport',
|
113 |
+
'comparative_analysis': '📊 Analyse Comparative',
|
114 |
+
'implementation_code': '💻 Code d\'Implémentation',
|
115 |
+
'data_format': '📋 Format de données attendu',
|
116 |
+
'examples': '📚 Exemples d\'analyse',
|
117 |
+
'light': 'Clair',
|
118 |
+
'dark': 'Sombre',
|
119 |
+
'best_for': 'Meilleur pour',
|
120 |
+
'loading': 'Chargement...',
|
121 |
+
'error_no_api': 'Veuillez configurer ANTHROPIC_API_KEY',
|
122 |
+
'error_no_files': 'Veuillez télécharger des fichiers à analyser',
|
123 |
+
'report_exported': 'Rapport exporté avec succès comme',
|
124 |
+
'specialized_in': '🎯 Spécialisé dans:',
|
125 |
+
'metrics_analyzed': '📊 Métriques analysées:',
|
126 |
+
'what_analyzes': '🔍 Ce qu\'il analyse spécifiquement:',
|
127 |
+
'tips': '💡 Conseils pour de meilleurs résultats:',
|
128 |
+
'additional_specs': '📝 Spécifications supplémentaires pour l\'analyse',
|
129 |
+
'additional_specs_placeholder': 'Ajoutez des exigences spécifiques ou des domaines d\'intérêt pour l\'analyse...'
|
130 |
+
},
|
131 |
+
'de': {
|
132 |
+
'title': '🧬 Vergleichender Analysator für Biotechnologische Modelle',
|
133 |
+
'subtitle': 'Spezialisiert auf vergleichende Analyse von Modellanpassungsergebnissen',
|
134 |
+
'upload_files': '📁 Ergebnisse hochladen (CSV/Excel)',
|
135 |
+
'select_model': '🤖 Claude Modell',
|
136 |
+
'select_language': '🌐 Sprache',
|
137 |
+
'select_theme': '🎨 Thema',
|
138 |
+
'detail_level': '📋 Detailgrad der Analyse',
|
139 |
+
'detailed': 'Detailliert',
|
140 |
+
'summarized': 'Zusammengefasst',
|
141 |
+
'analyze_button': '🚀 Analysieren und Vergleichen',
|
142 |
+
'export_format': '📄 Exportformat',
|
143 |
+
'export_button': '💾 Bericht Exportieren',
|
144 |
+
'comparative_analysis': '📊 Vergleichende Analyse',
|
145 |
+
'implementation_code': '💻 Implementierungscode',
|
146 |
+
'data_format': '📋 Erwartetes Datenformat',
|
147 |
+
'examples': '📚 Analysebeispiele',
|
148 |
+
'light': 'Hell',
|
149 |
+
'dark': 'Dunkel',
|
150 |
+
'best_for': 'Am besten für',
|
151 |
+
'loading': 'Laden...',
|
152 |
+
'error_no_api': 'Bitte konfigurieren Sie ANTHROPIC_API_KEY',
|
153 |
+
'error_no_files': 'Bitte laden Sie Dateien zur Analyse hoch',
|
154 |
+
'report_exported': 'Bericht erfolgreich exportiert als',
|
155 |
+
'specialized_in': '🎯 Spezialisiert auf:',
|
156 |
+
'metrics_analyzed': '📊 Analysierte Metriken:',
|
157 |
+
'what_analyzes': '🔍 Was spezifisch analysiert wird:',
|
158 |
+
'tips': '💡 Tipps für bessere Ergebnisse:',
|
159 |
+
'additional_specs': '📝 Zusätzliche Spezifikationen für die Analyse',
|
160 |
+
'additional_specs_placeholder': 'Fügen Sie spezifische Anforderungen oder Schwerpunktbereiche für die Analyse hinzu...'
|
161 |
+
},
|
162 |
+
'pt': {
|
163 |
+
'title': '🧬 Analisador Comparativo de Modelos Biotecnológicos',
|
164 |
+
'subtitle': 'Especializado em análise comparativa de resultados de ajuste',
|
165 |
+
'upload_files': '📁 Carregar resultados (CSV/Excel)',
|
166 |
+
'select_model': '🤖 Modelo Claude',
|
167 |
+
'select_language': '🌐 Idioma',
|
168 |
+
'select_theme': '🎨 Tema',
|
169 |
+
'detail_level': '📋 Nível de detalhe',
|
170 |
+
'detailed': 'Detalhado',
|
171 |
+
'summarized': 'Resumido',
|
172 |
+
'analyze_button': '🚀 Analisar e Comparar',
|
173 |
+
'export_format': '📄 Formato de exportação',
|
174 |
+
'export_button': '💾 Exportar Relatório',
|
175 |
+
'comparative_analysis': '📊 Análise Comparativa',
|
176 |
+
'implementation_code': '💻 Código de Implementação',
|
177 |
+
'data_format': '📋 Formato de dados esperado',
|
178 |
+
'examples': '📚 Exemplos de análise',
|
179 |
+
'light': 'Claro',
|
180 |
+
'dark': 'Escuro',
|
181 |
+
'best_for': 'Melhor para',
|
182 |
+
'loading': 'Carregando...',
|
183 |
+
'error_no_api': 'Por favor configure ANTHROPIC_API_KEY',
|
184 |
+
'error_no_files': 'Por favor carregue arquivos para analisar',
|
185 |
+
'report_exported': 'Relatório exportado com sucesso como',
|
186 |
+
'specialized_in': '🎯 Especializado em:',
|
187 |
+
'metrics_analyzed': '📊 Métricas analisadas:',
|
188 |
+
'what_analyzes': '🔍 O que analisa especificamente:',
|
189 |
+
'tips': '💡 Dicas para melhores resultados:',
|
190 |
+
'additional_specs': '📝 Especificações adicionais para a análise',
|
191 |
+
'additional_specs_placeholder': 'Adicione requisitos específicos ou áreas de foco para a análise...'
|
192 |
}
|
193 |
}
|
194 |
|
|
|
292 |
# Instancia global del registro
|
293 |
model_registry = ModelRegistry()
|
294 |
|
295 |
+
# Modelos de Claude disponibles
|
296 |
+
CLAUDE_MODELS = {
|
297 |
+
"claude-opus-4-20250514": {
|
298 |
+
"name": "Claude Opus 4 (Latest)",
|
299 |
+
"description": "Modelo más potente para desafíos complejos",
|
300 |
+
"max_tokens": 4000,
|
301 |
+
"best_for": "Análisis muy detallados y complejos"
|
|
|
|
|
302 |
},
|
303 |
+
"claude-sonnet-4-20250514": {
|
304 |
+
"name": "Claude Sonnet 4 (Latest)",
|
305 |
+
"description": "Modelo inteligente y eficiente para uso cotidiano",
|
306 |
+
"max_tokens": 4000,
|
307 |
+
"best_for": "Análisis general, recomendado para la mayoría de casos"
|
|
|
|
|
308 |
},
|
309 |
+
"claude-3-5-haiku-20241022": {
|
310 |
+
"name": "Claude 3.5 Haiku (Latest)",
|
311 |
+
"description": "Modelo más rápido para tareas diarias",
|
312 |
+
"max_tokens": 4000,
|
313 |
+
"best_for": "Análisis rápidos y económicos"
|
314 |
+
},
|
315 |
+
"claude-3-7-sonnet-20250219": {
|
316 |
+
"name": "Claude 3.7 Sonnet",
|
317 |
+
"description": "Modelo avanzado de la serie 3.7",
|
318 |
+
"max_tokens": 4000,
|
319 |
+
"best_for": "Análisis equilibrados con alta calidad"
|
320 |
+
},
|
321 |
+
"claude-3-5-sonnet-20241022": {
|
322 |
+
"name": "Claude 3.5 Sonnet (Oct 2024)",
|
323 |
+
"description": "Excelente balance entre velocidad y capacidad",
|
324 |
+
"max_tokens": 4000,
|
325 |
+
"best_for": "Análisis rápidos y precisos"
|
326 |
}
|
327 |
}
|
328 |
|
|
|
392 |
title_text = {
|
393 |
'en': 'Comparative Analysis Report - Biotechnological Models',
|
394 |
'es': 'Informe de Análisis Comparativo - Modelos Biotecnológicos',
|
395 |
+
'fr': 'Rapport d\'Analyse Comparative - Modèles Biotechnologiques',
|
396 |
+
'de': 'Vergleichsanalysebericht - Biotechnologische Modelle',
|
397 |
+
'pt': 'Relatório de Análise Comparativa - Modelos Biotecnológicos'
|
398 |
}
|
399 |
|
400 |
doc.add_heading(title_text.get(language, title_text['en']), 0)
|
|
|
403 |
date_text = {
|
404 |
'en': 'Generated on',
|
405 |
'es': 'Generado el',
|
406 |
+
'fr': 'Généré le',
|
407 |
+
'de': 'Erstellt am',
|
408 |
+
'pt': 'Gerado em'
|
409 |
}
|
410 |
doc.add_paragraph(f"{date_text.get(language, date_text['en'])}: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
411 |
doc.add_paragraph()
|
|
|
474 |
title_text = {
|
475 |
'en': 'Comparative Analysis Report - Biotechnological Models',
|
476 |
'es': 'Informe de Análisis Comparativo - Modelos Biotecnológicos',
|
477 |
+
'fr': 'Rapport d\'Analyse Comparative - Modèles Biotechnologiques',
|
478 |
+
'de': 'Vergleichsanalysebericht - Biotechnologische Modelle',
|
479 |
+
'pt': 'Relatório de Análise Comparativa - Modelos Biotecnológicos'
|
480 |
}
|
481 |
|
482 |
story.append(Paragraph(title_text.get(language, title_text['en']), title_style))
|
|
|
485 |
date_text = {
|
486 |
'en': 'Generated on',
|
487 |
'es': 'Generado el',
|
488 |
+
'fr': 'Généré le',
|
489 |
+
'de': 'Erstellt am',
|
490 |
+
'pt': 'Gerado em'
|
491 |
}
|
492 |
story.append(Paragraph(f"{date_text.get(language, date_text['en'])}: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", styles['Normal']))
|
493 |
story.append(Spacer(1, 0.5*inch))
|
|
|
525 |
return filename
|
526 |
|
527 |
class AIAnalyzer:
|
528 |
+
"""Clase para análisis con IA"""
|
529 |
|
530 |
def __init__(self, client, model_registry):
|
531 |
self.client = client
|
532 |
self.model_registry = model_registry
|
|
|
|
|
|
|
|
|
|
|
|
|
533 |
|
534 |
+
def detect_analysis_type(self, content: Union[str, pd.DataFrame]) -> AnalysisType:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
535 |
"""Detecta el tipo de análisis necesario"""
|
536 |
if isinstance(content, pd.DataFrame):
|
537 |
columns = [col.lower() for col in content.columns]
|
|
|
560 |
"""
|
561 |
|
562 |
try:
|
563 |
+
response = self.client.messages.create(
|
564 |
+
model="claude-3-haiku-20240307",
|
565 |
+
max_tokens=10,
|
566 |
+
messages=[{"role": "user", "content": f"{prompt}\n\n{content[:1000]}"}]
|
|
|
567 |
)
|
568 |
|
569 |
+
result = response.content[0].text.strip().upper()
|
|
|
|
|
|
|
|
|
|
|
|
|
570 |
if "MODEL" in result:
|
571 |
return AnalysisType.MATHEMATICAL_MODEL
|
572 |
elif "RESULTS" in result:
|
|
|
576 |
else:
|
577 |
return AnalysisType.UNKNOWN
|
578 |
|
579 |
+
except:
|
|
|
580 |
return AnalysisType.UNKNOWN
|
581 |
|
582 |
def get_language_prompt_prefix(self, language: str) -> str:
|
|
|
584 |
prefixes = {
|
585 |
'en': "Please respond in English. ",
|
586 |
'es': "Por favor responde en español. ",
|
587 |
+
'fr': "Veuillez répondre en français. ",
|
588 |
+
'de': "Bitte antworten Sie auf Deutsch. ",
|
589 |
+
'pt': "Por favor responda em português. "
|
590 |
}
|
591 |
return prefixes.get(language, prefixes['en'])
|
592 |
|
593 |
+
def analyze_fitting_results(self, data: pd.DataFrame, claude_model: str, detail_level: str = "detailed",
|
594 |
+
language: str = "en", additional_specs: str = "") -> Dict:
|
595 |
+
"""Analiza resultados de ajuste de modelos con soporte multiidioma y especificaciones adicionales"""
|
|
|
596 |
|
597 |
# Preparar resumen completo de los datos
|
598 |
data_summary = f"""
|
|
|
602 |
- Columns: {list(data.columns)}
|
603 |
- Number of models evaluated: {len(data)}
|
604 |
|
605 |
+
Complete data:
|
606 |
+
{data.to_string()}
|
607 |
+
|
608 |
+
Descriptive statistics:
|
609 |
+
{data.describe().to_string()}
|
610 |
"""
|
611 |
|
612 |
+
# Extraer valores para usar en el código
|
613 |
+
data_dict = data.to_dict('records')
|
614 |
+
|
615 |
# Obtener prefijo de idioma
|
616 |
lang_prefix = self.get_language_prompt_prefix(language)
|
617 |
|
|
|
771 |
"""
|
772 |
|
773 |
try:
|
774 |
+
response = self.client.messages.create(
|
775 |
+
model=claude_model,
|
776 |
+
max_tokens=4000,
|
|
|
|
|
777 |
messages=[{
|
778 |
"role": "user",
|
779 |
"content": f"{prompt}\n\n{data_summary}"
|
780 |
}]
|
781 |
)
|
782 |
|
783 |
+
# Análisis adicional para generar código con valores numéricos reales
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
784 |
code_prompt = f"""
|
785 |
{lang_prefix}
|
786 |
|
787 |
Based on the analysis and this actual data:
|
788 |
+
{data.to_string()}
|
789 |
|
790 |
Generate Python code that:
|
791 |
|
|
|
812 |
Format: Complete, executable Python code with actual data values embedded.
|
813 |
"""
|
814 |
|
815 |
+
code_response = self.client.messages.create(
|
816 |
+
model=claude_model,
|
817 |
+
max_tokens=3000,
|
|
|
818 |
messages=[{
|
819 |
"role": "user",
|
820 |
"content": code_prompt
|
821 |
}]
|
822 |
)
|
823 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
824 |
return {
|
825 |
"tipo": "Comparative Analysis of Mathematical Models",
|
826 |
+
"analisis_completo": response.content[0].text,
|
827 |
+
"codigo_implementacion": code_response.content[0].text,
|
828 |
"resumen_datos": {
|
829 |
"n_modelos": len(data),
|
830 |
"columnas": list(data.columns),
|
|
|
832 |
for metric in ['r2', 'rmse', 'aic', 'bic', 'mse'])],
|
833 |
"mejor_r2": data['R2'].max() if 'R2' in data.columns else None,
|
834 |
"mejor_modelo_r2": data.loc[data['R2'].idxmax()]['Model'] if 'R2' in data.columns and 'Model' in data.columns else None,
|
835 |
+
"datos_completos": data_dict # Incluir todos los datos para el código
|
836 |
}
|
837 |
}
|
838 |
|
839 |
except Exception as e:
|
|
|
840 |
return {"error": str(e)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
841 |
|
842 |
+
def process_files(files, claude_model: str, detail_level: str = "detailed",
|
843 |
+
language: str = "en", additional_specs: str = "") -> Tuple[str, str]:
|
844 |
+
"""Procesa múltiples archivos con soporte de idioma y especificaciones adicionales"""
|
|
|
845 |
processor = FileProcessor()
|
846 |
analyzer = AIAnalyzer(client, model_registry)
|
|
|
|
|
847 |
results = []
|
848 |
all_code = []
|
|
|
849 |
|
850 |
for file in files:
|
851 |
if file is None:
|
|
|
860 |
if file_ext in ['.csv', '.xlsx', '.xls']:
|
861 |
if language == 'es':
|
862 |
results.append(f"## 📊 Análisis de Resultados: {file_name}")
|
|
|
863 |
else:
|
864 |
results.append(f"## 📊 Results Analysis: {file_name}")
|
|
|
865 |
|
866 |
if file_ext == '.csv':
|
867 |
df = processor.read_csv(file_content)
|
|
|
868 |
else:
|
869 |
df = processor.read_excel(file_content)
|
|
|
870 |
|
871 |
if df is not None:
|
872 |
+
analysis_type = analyzer.detect_analysis_type(df)
|
|
|
873 |
|
874 |
if analysis_type == AnalysisType.FITTING_RESULTS:
|
875 |
result = analyzer.analyze_fitting_results(
|
876 |
+
df, claude_model, detail_level, language, additional_specs
|
|
|
877 |
)
|
878 |
|
879 |
if language == 'es':
|
|
|
886 |
all_code.append(result["codigo_implementacion"])
|
887 |
|
888 |
results.append("\n---\n")
|
|
|
889 |
|
890 |
analysis_text = "\n".join(results)
|
891 |
code_text = "\n\n# " + "="*50 + "\n\n".join(all_code) if all_code else generate_implementation_code(analysis_text)
|
|
|
892 |
|
893 |
+
return analysis_text, code_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
894 |
|
895 |
def generate_implementation_code(analysis_results: str) -> str:
|
896 |
"""Genera código de implementación con análisis por experimento"""
|
897 |
+
code = """
|
898 |
+
import numpy as np
|
899 |
+
import pandas as pd
|
900 |
+
import matplotlib.pyplot as plt
|
901 |
+
from scipy.integrate import odeint
|
902 |
+
from scipy.optimize import curve_fit, differential_evolution
|
903 |
+
from sklearn.metrics import r2_score, mean_squared_error
|
904 |
+
import seaborn as sns
|
905 |
+
from typing import Dict, List, Tuple, Optional
|
906 |
+
|
907 |
+
# Visualization configuration
|
908 |
+
plt.style.use('seaborn-v0_8-darkgrid')
|
909 |
+
sns.set_palette("husl")
|
910 |
+
|
911 |
+
class ExperimentalModelAnalyzer:
|
912 |
+
\"\"\"
|
913 |
+
Class for comparative analysis of biotechnological models across multiple experiments.
|
914 |
+
Analyzes biomass, substrate and product models separately for each experimental condition.
|
915 |
+
\"\"\"
|
916 |
+
|
917 |
+
def __init__(self):
|
918 |
+
self.results_df = None
|
919 |
+
self.experiments = {}
|
920 |
+
self.best_models_by_experiment = {}
|
921 |
+
self.overall_best_models = {
|
922 |
+
'biomass': None,
|
923 |
+
'substrate': None,
|
924 |
+
'product': None
|
925 |
+
}
|
926 |
+
|
927 |
+
def load_results(self, file_path: str = None, data_dict: dict = None) -> pd.DataFrame:
|
928 |
+
\"\"\"Load fitting results from CSV/Excel file or dictionary\"\"\"
|
929 |
+
if data_dict:
|
930 |
+
self.results_df = pd.DataFrame(data_dict)
|
931 |
+
elif file_path:
|
932 |
+
if file_path.endswith('.csv'):
|
933 |
+
self.results_df = pd.read_csv(file_path)
|
934 |
+
else:
|
935 |
+
self.results_df = pd.read_excel(file_path)
|
936 |
+
|
937 |
+
print(f"✅ Data loaded: {len(self.results_df)} models")
|
938 |
+
print(f"📊 Available columns: {list(self.results_df.columns)}")
|
939 |
+
|
940 |
+
# Identify experiments
|
941 |
+
if 'Experiment' in self.results_df.columns:
|
942 |
+
self.experiments = self.results_df.groupby('Experiment').groups
|
943 |
+
print(f"🧪 Experiments found: {list(self.experiments.keys())}")
|
944 |
+
|
945 |
+
return self.results_df
|
946 |
+
|
947 |
+
def analyze_by_experiment(self,
|
948 |
+
experiment_col: str = 'Experiment',
|
949 |
+
model_col: str = 'Model',
|
950 |
+
type_col: str = 'Type',
|
951 |
+
r2_col: str = 'R2',
|
952 |
+
rmse_col: str = 'RMSE') -> Dict:
|
953 |
+
\"\"\"
|
954 |
+
Analyze models by experiment and variable type.
|
955 |
+
Identifies best models for biomass, substrate, and product in each experiment.
|
956 |
+
\"\"\"
|
957 |
+
if self.results_df is None:
|
958 |
+
raise ValueError("First load data with load_results()")
|
959 |
+
|
960 |
+
results_by_exp = {}
|
961 |
+
|
962 |
+
# Get unique experiments
|
963 |
+
if experiment_col in self.results_df.columns:
|
964 |
+
experiments = self.results_df[experiment_col].unique()
|
965 |
+
else:
|
966 |
+
experiments = ['All_Data']
|
967 |
+
self.results_df[experiment_col] = 'All_Data'
|
968 |
+
|
969 |
+
print("\\n" + "="*80)
|
970 |
+
print("📊 ANALYSIS BY EXPERIMENT AND VARIABLE TYPE")
|
971 |
+
print("="*80)
|
972 |
+
|
973 |
+
for exp in experiments:
|
974 |
+
print(f"\\n🧪 EXPERIMENT: {exp}")
|
975 |
+
print("-"*50)
|
976 |
+
|
977 |
+
exp_data = self.results_df[self.results_df[experiment_col] == exp]
|
978 |
+
results_by_exp[exp] = {}
|
979 |
+
|
980 |
+
# Analyze by variable type if available
|
981 |
+
if type_col in exp_data.columns:
|
982 |
+
var_types = exp_data[type_col].unique()
|
983 |
+
|
984 |
+
for var_type in var_types:
|
985 |
+
var_data = exp_data[exp_data[type_col] == var_type]
|
986 |
+
|
987 |
+
if not var_data.empty:
|
988 |
+
# Find best model for this variable type
|
989 |
+
best_idx = var_data[r2_col].idxmax()
|
990 |
+
best_model = var_data.loc[best_idx]
|
991 |
+
|
992 |
+
results_by_exp[exp][var_type] = {
|
993 |
+
'best_model': best_model[model_col],
|
994 |
+
'r2': best_model[r2_col],
|
995 |
+
'rmse': best_model[rmse_col],
|
996 |
+
'all_models': var_data[[model_col, r2_col, rmse_col]].to_dict('records')
|
997 |
+
}
|
998 |
+
|
999 |
+
print(f"\\n 📈 {var_type.upper()}:")
|
1000 |
+
print(f" Best Model: {best_model[model_col]}")
|
1001 |
+
print(f" R² = {best_model[r2_col]:.4f}")
|
1002 |
+
print(f" RMSE = {best_model[rmse_col]:.4f}")
|
1003 |
+
|
1004 |
+
# Show all models for this variable
|
1005 |
+
print(f"\\n All {var_type} models tested:")
|
1006 |
+
for _, row in var_data.iterrows():
|
1007 |
+
print(f" - {row[model_col]}: R²={row[r2_col]:.4f}, RMSE={row[rmse_col]:.4f}")
|
1008 |
+
else:
|
1009 |
+
# If no type column, analyze all models together
|
1010 |
+
best_idx = exp_data[r2_col].idxmax()
|
1011 |
+
best_model = exp_data.loc[best_idx]
|
1012 |
+
|
1013 |
+
results_by_exp[exp]['all'] = {
|
1014 |
+
'best_model': best_model[model_col],
|
1015 |
+
'r2': best_model[r2_col],
|
1016 |
+
'rmse': best_model[rmse_col],
|
1017 |
+
'all_models': exp_data[[model_col, r2_col, rmse_col]].to_dict('records')
|
1018 |
+
}
|
1019 |
+
|
1020 |
+
self.best_models_by_experiment = results_by_exp
|
1021 |
+
|
1022 |
+
# Determine overall best models
|
1023 |
+
self._determine_overall_best_models()
|
1024 |
+
|
1025 |
+
return results_by_exp
|
1026 |
+
|
1027 |
+
def _determine_overall_best_models(self):
|
1028 |
+
\"\"\"Determine the best models across all experiments\"\"\"
|
1029 |
+
print("\\n" + "="*80)
|
1030 |
+
print("🏆 OVERALL BEST MODELS ACROSS ALL EXPERIMENTS")
|
1031 |
+
print("="*80)
|
1032 |
+
|
1033 |
+
# Aggregate performance by model and type
|
1034 |
+
model_performance = {}
|
1035 |
+
|
1036 |
+
for exp, exp_results in self.best_models_by_experiment.items():
|
1037 |
+
for var_type, var_results in exp_results.items():
|
1038 |
+
if var_type not in model_performance:
|
1039 |
+
model_performance[var_type] = {}
|
1040 |
+
|
1041 |
+
for model_data in var_results['all_models']:
|
1042 |
+
model_name = model_data['Model']
|
1043 |
+
if model_name not in model_performance[var_type]:
|
1044 |
+
model_performance[var_type][model_name] = {
|
1045 |
+
'r2_values': [],
|
1046 |
+
'rmse_values': [],
|
1047 |
+
'experiments': []
|
1048 |
+
}
|
1049 |
+
|
1050 |
+
model_performance[var_type][model_name]['r2_values'].append(model_data['R2'])
|
1051 |
+
model_performance[var_type][model_name]['rmse_values'].append(model_data['RMSE'])
|
1052 |
+
model_performance[var_type][model_name]['experiments'].append(exp)
|
1053 |
+
|
1054 |
+
# Calculate average performance and select best
|
1055 |
+
for var_type, models in model_performance.items():
|
1056 |
+
best_avg_r2 = -1
|
1057 |
+
best_model = None
|
1058 |
+
|
1059 |
+
print(f"\\n📊 {var_type.upper()} MODELS:")
|
1060 |
+
for model_name, perf_data in models.items():
|
1061 |
+
avg_r2 = np.mean(perf_data['r2_values'])
|
1062 |
+
avg_rmse = np.mean(perf_data['rmse_values'])
|
1063 |
+
n_exp = len(perf_data['experiments'])
|
1064 |
+
|
1065 |
+
print(f" {model_name}:")
|
1066 |
+
print(f" Average R² = {avg_r2:.4f}")
|
1067 |
+
print(f" Average RMSE = {avg_rmse:.4f}")
|
1068 |
+
print(f" Tested in {n_exp} experiments")
|
1069 |
+
|
1070 |
+
if avg_r2 > best_avg_r2:
|
1071 |
+
best_avg_r2 = avg_r2
|
1072 |
+
best_model = {
|
1073 |
+
'name': model_name,
|
1074 |
+
'avg_r2': avg_r2,
|
1075 |
+
'avg_rmse': avg_rmse,
|
1076 |
+
'n_experiments': n_exp
|
1077 |
+
}
|
1078 |
+
|
1079 |
+
if var_type.lower() in ['biomass', 'substrate', 'product']:
|
1080 |
+
self.overall_best_models[var_type.lower()] = best_model
|
1081 |
+
print(f"\\n 🏆 BEST {var_type.upper()} MODEL: {best_model['name']} (Avg R²={best_model['avg_r2']:.4f})")
|
1082 |
+
|
1083 |
+
def create_comparison_visualizations(self):
|
1084 |
+
\"\"\"Create visualizations comparing models across experiments\"\"\"
|
1085 |
+
if not self.best_models_by_experiment:
|
1086 |
+
raise ValueError("First run analyze_by_experiment()")
|
1087 |
+
|
1088 |
+
# Prepare data for visualization
|
1089 |
+
experiments = []
|
1090 |
+
biomass_r2 = []
|
1091 |
+
substrate_r2 = []
|
1092 |
+
product_r2 = []
|
1093 |
+
|
1094 |
+
for exp, results in self.best_models_by_experiment.items():
|
1095 |
+
experiments.append(exp)
|
1096 |
+
biomass_r2.append(results.get('Biomass', {}).get('r2', 0))
|
1097 |
+
substrate_r2.append(results.get('Substrate', {}).get('r2', 0))
|
1098 |
+
product_r2.append(results.get('Product', {}).get('r2', 0))
|
1099 |
+
|
1100 |
+
# Create figure with subplots
|
1101 |
+
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
|
1102 |
+
fig.suptitle('Model Performance Comparison Across Experiments', fontsize=16)
|
1103 |
+
|
1104 |
+
# 1. R² comparison by experiment and variable type
|
1105 |
+
ax1 = axes[0, 0]
|
1106 |
+
x = np.arange(len(experiments))
|
1107 |
+
width = 0.25
|
1108 |
+
|
1109 |
+
ax1.bar(x - width, biomass_r2, width, label='Biomass', color='green', alpha=0.8)
|
1110 |
+
ax1.bar(x, substrate_r2, width, label='Substrate', color='blue', alpha=0.8)
|
1111 |
+
ax1.bar(x + width, product_r2, width, label='Product', color='red', alpha=0.8)
|
1112 |
+
|
1113 |
+
ax1.set_xlabel('Experiment')
|
1114 |
+
ax1.set_ylabel('R²')
|
1115 |
+
ax1.set_title('Best Model R² by Experiment and Variable Type')
|
1116 |
+
ax1.set_xticks(x)
|
1117 |
+
ax1.set_xticklabels(experiments, rotation=45, ha='right')
|
1118 |
+
ax1.legend()
|
1119 |
+
ax1.grid(True, alpha=0.3)
|
1120 |
+
|
1121 |
+
# Add value labels
|
1122 |
+
for i, (b, s, p) in enumerate(zip(biomass_r2, substrate_r2, product_r2)):
|
1123 |
+
if b > 0: ax1.text(i - width, b + 0.01, f'{b:.3f}', ha='center', va='bottom', fontsize=8)
|
1124 |
+
if s > 0: ax1.text(i, s + 0.01, f'{s:.3f}', ha='center', va='bottom', fontsize=8)
|
1125 |
+
if p > 0: ax1.text(i + width, p + 0.01, f'{p:.3f}', ha='center', va='bottom', fontsize=8)
|
1126 |
+
|
1127 |
+
# 2. Model frequency heatmap
|
1128 |
+
ax2 = axes[0, 1]
|
1129 |
+
# This would show which models appear most frequently as best
|
1130 |
+
# Implementation depends on actual data structure
|
1131 |
+
ax2.text(0.5, 0.5, 'Model Frequency Analysis\\n(Most Used Models)',
|
1132 |
+
ha='center', va='center', transform=ax2.transAxes)
|
1133 |
+
ax2.set_title('Most Frequently Selected Models')
|
1134 |
+
|
1135 |
+
# 3. Parameter evolution across experiments
|
1136 |
+
ax3 = axes[1, 0]
|
1137 |
+
ax3.text(0.5, 0.5, 'Parameter Evolution\\nAcross Experiments',
|
1138 |
+
ha='center', va='center', transform=ax3.transAxes)
|
1139 |
+
ax3.set_title('Parameter Trends')
|
1140 |
+
|
1141 |
+
# 4. Overall best models summary
|
1142 |
+
ax4 = axes[1, 1]
|
1143 |
+
ax4.axis('off')
|
1144 |
+
|
1145 |
+
summary_text = "🏆 OVERALL BEST MODELS\\n\\n"
|
1146 |
+
for var_type, model_info in self.overall_best_models.items():
|
1147 |
+
if model_info:
|
1148 |
+
summary_text += f"{var_type.upper()}:\\n"
|
1149 |
+
summary_text += f" Model: {model_info['name']}\\n"
|
1150 |
+
summary_text += f" Avg R²: {model_info['avg_r2']:.4f}\\n"
|
1151 |
+
summary_text += f" Tested in: {model_info['n_experiments']} experiments\\n\\n"
|
1152 |
+
|
1153 |
+
ax4.text(0.1, 0.9, summary_text, transform=ax4.transAxes,
|
1154 |
+
fontsize=12, verticalalignment='top', fontfamily='monospace')
|
1155 |
+
ax4.set_title('Overall Best Models Summary')
|
1156 |
+
|
1157 |
+
plt.tight_layout()
|
1158 |
+
plt.show()
|
1159 |
+
|
1160 |
+
def generate_summary_table(self) -> pd.DataFrame:
|
1161 |
+
\"\"\"Generate a summary table of best models by experiment and type\"\"\"
|
1162 |
+
summary_data = []
|
1163 |
+
|
1164 |
+
for exp, results in self.best_models_by_experiment.items():
|
1165 |
+
for var_type, var_results in results.items():
|
1166 |
+
summary_data.append({
|
1167 |
+
'Experiment': exp,
|
1168 |
+
'Variable_Type': var_type,
|
1169 |
+
'Best_Model': var_results['best_model'],
|
1170 |
+
'R2': var_results['r2'],
|
1171 |
+
'RMSE': var_results['rmse']
|
1172 |
+
})
|
1173 |
+
|
1174 |
+
summary_df = pd.DataFrame(summary_data)
|
1175 |
+
|
1176 |
+
print("\\n📋 SUMMARY TABLE: BEST MODELS BY EXPERIMENT AND VARIABLE TYPE")
|
1177 |
+
print("="*80)
|
1178 |
+
print(summary_df.to_string(index=False))
|
1179 |
+
|
1180 |
+
return summary_df
|
1181 |
+
|
1182 |
+
# Example usage
|
1183 |
+
if __name__ == "__main__":
|
1184 |
+
print("🧬 Experimental Model Comparison System")
|
1185 |
+
print("="*60)
|
1186 |
+
|
1187 |
+
# Example data structure with experiments
|
1188 |
+
example_data = {
|
1189 |
+
'Experiment': ['pH_7.0', 'pH_7.0', 'pH_7.0', 'pH_7.5', 'pH_7.5', 'pH_7.5',
|
1190 |
+
'pH_7.0', 'pH_7.0', 'pH_7.5', 'pH_7.5',
|
1191 |
+
'pH_7.0', 'pH_7.0', 'pH_7.5', 'pH_7.5'],
|
1192 |
+
'Model': ['Monod', 'Logistic', 'Gompertz', 'Monod', 'Logistic', 'Gompertz',
|
1193 |
+
'First_Order', 'Monod_Substrate', 'First_Order', 'Monod_Substrate',
|
1194 |
+
'Luedeking_Piret', 'Linear', 'Luedeking_Piret', 'Linear'],
|
1195 |
+
'Type': ['Biomass', 'Biomass', 'Biomass', 'Biomass', 'Biomass', 'Biomass',
|
1196 |
+
'Substrate', 'Substrate', 'Substrate', 'Substrate',
|
1197 |
+
'Product', 'Product', 'Product', 'Product'],
|
1198 |
+
'R2': [0.9845, 0.9912, 0.9956, 0.9789, 0.9834, 0.9901,
|
1199 |
+
0.9723, 0.9856, 0.9698, 0.9812,
|
1200 |
+
0.9634, 0.9512, 0.9687, 0.9423],
|
1201 |
+
'RMSE': [0.0234, 0.0189, 0.0145, 0.0267, 0.0223, 0.0178,
|
1202 |
+
0.0312, 0.0245, 0.0334, 0.0289,
|
1203 |
+
0.0412, 0.0523, 0.0389, 0.0567],
|
1204 |
+
'mu_max': [0.45, 0.48, 0.52, 0.42, 0.44, 0.49,
|
1205 |
+
None, None, None, None, None, None, None, None],
|
1206 |
+
'Ks': [None, None, None, None, None, None,
|
1207 |
+
2.1, 1.8, 2.3, 1.9, None, None, None, None]
|
1208 |
+
}
|
1209 |
+
|
1210 |
+
# Create analyzer
|
1211 |
+
analyzer = ExperimentalModelAnalyzer()
|
1212 |
+
|
1213 |
+
# Load data
|
1214 |
+
analyzer.load_results(data_dict=example_data)
|
1215 |
+
|
1216 |
+
# Analyze by experiment
|
1217 |
+
results = analyzer.analyze_by_experiment()
|
1218 |
+
|
1219 |
+
# Create visualizations
|
1220 |
+
analyzer.create_comparison_visualizations()
|
1221 |
+
|
1222 |
+
# Generate summary table
|
1223 |
+
summary = analyzer.generate_summary_table()
|
1224 |
+
|
1225 |
+
print("\\n✨ Analysis complete! Best models identified for each experiment and variable type.")
|
1226 |
+
"""
|
1227 |
+
|
1228 |
+
return code
|
1229 |
|
1230 |
# Estado global para almacenar resultados
|
1231 |
class AppState:
|
1232 |
def __init__(self):
|
|
|
1233 |
self.current_analysis = ""
|
1234 |
self.current_code = ""
|
1235 |
self.current_language = "en"
|
|
|
1236 |
|
1237 |
app_state = AppState()
|
1238 |
|
1239 |
def export_report(export_format: str, language: str) -> Tuple[str, str]:
|
1240 |
"""Exporta el reporte al formato seleccionado"""
|
1241 |
if not app_state.current_analysis:
|
1242 |
+
error_msg = {
|
1243 |
+
'en': "No analysis available to export",
|
1244 |
+
'es': "No hay análisis disponible para exportar",
|
1245 |
+
'fr': "Aucune analyse disponible pour exporter",
|
1246 |
+
'de': "Keine Analyse zum Exportieren verfügbar",
|
1247 |
+
'pt': "Nenhuma análise disponível para exportar"
|
1248 |
+
}
|
1249 |
+
return error_msg.get(language, error_msg['en']), ""
|
1250 |
|
1251 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
1252 |
|
|
|
1283 |
gr.update(label=t['select_theme']), # theme_selector
|
1284 |
gr.update(label=t['detail_level']), # detail_level
|
1285 |
gr.update(label=t['additional_specs'], placeholder=t['additional_specs_placeholder']), # additional_specs
|
|
|
|
|
1286 |
gr.update(value=t['analyze_button']), # analyze_btn
|
1287 |
gr.update(label=t['export_format']), # export_format
|
1288 |
gr.update(value=t['export_button']), # export_btn
|
1289 |
+
gr.update(label=t['comparative_analysis']), # analysis_output
|
1290 |
+
gr.update(label=t['implementation_code']), # code_output
|
|
|
|
|
1291 |
gr.update(label=t['data_format']) # data_format_accordion
|
1292 |
]
|
1293 |
|
1294 |
+
def process_and_store(files, model, detail, language, additional_specs):
|
1295 |
"""Procesa archivos y almacena resultados"""
|
1296 |
if not files:
|
1297 |
error_msg = TRANSLATIONS[language]['error_no_files']
|
1298 |
+
return error_msg, ""
|
|
|
|
|
|
|
|
|
|
|
1299 |
|
1300 |
+
analysis, code = process_files(files, model, detail, language, additional_specs)
|
1301 |
app_state.current_analysis = analysis
|
1302 |
app_state.current_code = code
|
1303 |
+
return analysis, code
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1304 |
|
1305 |
+
with gr.Blocks(theme=THEMES[current_theme]) as demo:
|
1306 |
# Componentes de UI
|
1307 |
with gr.Row():
|
1308 |
with gr.Column(scale=3):
|
|
|
1311 |
with gr.Column(scale=1):
|
1312 |
with gr.Row():
|
1313 |
language_selector = gr.Dropdown(
|
1314 |
+
choices=[("English", "en"), ("Español", "es"), ("Français", "fr"),
|
1315 |
+
("Deutsch", "de"), ("Português", "pt")],
|
1316 |
value="en",
|
1317 |
label=TRANSLATIONS[current_language]['select_language'],
|
1318 |
interactive=True
|
|
|
1334 |
)
|
1335 |
|
1336 |
model_selector = gr.Dropdown(
|
1337 |
+
choices=list(CLAUDE_MODELS.keys()),
|
1338 |
+
value="claude-3-5-sonnet-20241022",
|
1339 |
label=TRANSLATIONS[current_language]['select_model'],
|
1340 |
+
info=f"{TRANSLATIONS[current_language]['best_for']}: {CLAUDE_MODELS['claude-3-5-sonnet-20241022']['best_for']}"
|
1341 |
)
|
1342 |
|
1343 |
detail_level = gr.Radio(
|
|
|
1349 |
label=TRANSLATIONS[current_language]['detail_level']
|
1350 |
)
|
1351 |
|
1352 |
+
# Nueva entrada para especificaciones adicionales
|
1353 |
additional_specs = gr.Textbox(
|
1354 |
label=TRANSLATIONS[current_language]['additional_specs'],
|
1355 |
placeholder=TRANSLATIONS[current_language]['additional_specs_placeholder'],
|
|
|
1358 |
interactive=True
|
1359 |
)
|
1360 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1361 |
analyze_btn = gr.Button(
|
1362 |
TRANSLATIONS[current_language]['analyze_button'],
|
1363 |
variant="primary",
|
|
|
1389 |
)
|
1390 |
|
1391 |
with gr.Column(scale=2):
|
|
|
|
|
|
|
|
|
|
|
1392 |
analysis_output = gr.Markdown(
|
1393 |
+
label=TRANSLATIONS[current_language]['comparative_analysis']
|
1394 |
)
|
1395 |
|
1396 |
code_output = gr.Code(
|
1397 |
+
label=TRANSLATIONS[current_language]['implementation_code'],
|
1398 |
language="python",
|
1399 |
interactive=True,
|
1400 |
+
lines=20
|
|
|
|
|
|
|
|
|
1401 |
)
|
1402 |
|
1403 |
data_format_accordion = gr.Accordion(
|
|
|
1424 |
- **Parameters**: Model-specific parameters
|
1425 |
""")
|
1426 |
|
1427 |
+
# Definir ejemplos
|
1428 |
+
examples = gr.Examples(
|
1429 |
+
examples=[
|
1430 |
+
[["examples/biomass_models_comparison.csv"], "claude-3-5-sonnet-20241022", "detailed", ""],
|
1431 |
+
[["examples/substrate_kinetics_results.xlsx"], "claude-3-5-sonnet-20241022", "summarized", "Focus on temperature effects"]
|
1432 |
+
],
|
1433 |
+
inputs=[files_input, model_selector, detail_level, additional_specs],
|
1434 |
+
label=TRANSLATIONS[current_language]['examples']
|
1435 |
+
)
|
1436 |
+
|
1437 |
+
# Eventos - Actualizado para incluir additional_specs
|
1438 |
language_selector.change(
|
1439 |
update_interface_language,
|
1440 |
inputs=[language_selector],
|
1441 |
outputs=[
|
1442 |
title_text, subtitle_text, files_input, model_selector,
|
1443 |
language_selector, theme_selector, detail_level, additional_specs,
|
1444 |
+
analyze_btn, export_format, export_btn, analysis_output,
|
1445 |
+
code_output, data_format_accordion
|
|
|
1446 |
]
|
1447 |
)
|
1448 |
|
1449 |
def change_theme(theme_name):
|
1450 |
"""Cambia el tema de la interfaz"""
|
1451 |
+
# Nota: En Gradio actual, cambiar el tema dinámicamente requiere recargar
|
1452 |
+
# Esta es una limitación conocida
|
1453 |
return gr.Info("Theme will be applied on next page load")
|
1454 |
|
1455 |
theme_selector.change(
|
|
|
1460 |
|
1461 |
analyze_btn.click(
|
1462 |
fn=process_and_store,
|
1463 |
+
inputs=[files_input, model_selector, detail_level, language_selector, additional_specs],
|
1464 |
+
outputs=[analysis_output, code_output]
|
|
|
1465 |
)
|
1466 |
|
1467 |
def handle_export(format, language):
|
|
|
1481 |
|
1482 |
# Función principal
|
1483 |
def main():
|
1484 |
+
if not os.getenv("ANTHROPIC_API_KEY"):
|
1485 |
+
print("⚠️ Configure ANTHROPIC_API_KEY in HuggingFace Space secrets")
|
1486 |
return gr.Interface(
|
1487 |
fn=lambda x: TRANSLATIONS['en']['error_no_api'],
|
1488 |
inputs=gr.Textbox(),
|