Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -25,7 +25,7 @@ from reportlab.pdfbase import pdfmetrics
|
|
25 |
from reportlab.pdfbase.ttfonts import TTFont
|
26 |
import matplotlib.pyplot as plt
|
27 |
from datetime import datetime
|
28 |
-
from openai import OpenAI
|
29 |
|
30 |
# Configuración para HuggingFace
|
31 |
os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
|
@@ -36,7 +36,7 @@ client = OpenAI(
|
|
36 |
api_key=os.environ.get("NEBIUS_API_KEY")
|
37 |
)
|
38 |
|
39 |
-
# Sistema de traducción
|
40 |
TRANSLATIONS = {
|
41 |
'en': {
|
42 |
'title': '🧬 Comparative Analyzer of Biotechnological Models',
|
@@ -67,7 +67,18 @@ TRANSLATIONS = {
|
|
67 |
'what_analyzes': '🔍 What it specifically analyzes:',
|
68 |
'tips': '💡 Tips for better results:',
|
69 |
'additional_specs': '📝 Additional specifications for analysis',
|
70 |
-
'additional_specs_placeholder': 'Add any specific requirements or focus areas for the analysis...'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
},
|
72 |
'es': {
|
73 |
'title': '🧬 Analizador Comparativo de Modelos Biotecnológicos',
|
@@ -98,100 +109,18 @@ TRANSLATIONS = {
|
|
98 |
'what_analyzes': '🔍 Qué analiza específicamente:',
|
99 |
'tips': '💡 Tips para mejores resultados:',
|
100 |
'additional_specs': '📝 Especificaciones adicionales para el análisis',
|
101 |
-
'additional_specs_placeholder': 'Agregue cualquier requerimiento específico o áreas de enfoque para el análisis...'
|
102 |
-
|
103 |
-
|
104 |
-
'
|
105 |
-
'
|
106 |
-
'
|
107 |
-
'
|
108 |
-
'
|
109 |
-
'
|
110 |
-
'
|
111 |
-
'
|
112 |
-
'
|
113 |
-
'analyze_button': '🚀 Analyser et Comparer',
|
114 |
-
'export_format': '📄 Format d\'export',
|
115 |
-
'export_button': '💾 Exporter le Rapport',
|
116 |
-
'comparative_analysis': '📊 Analyse Comparative',
|
117 |
-
'implementation_code': '💻 Code d\'Implémentation',
|
118 |
-
'data_format': '📋 Format de données attendu',
|
119 |
-
'examples': '📚 Exemples d\'analyse',
|
120 |
-
'light': 'Clair',
|
121 |
-
'dark': 'Sombre',
|
122 |
-
'best_for': 'Meilleur pour',
|
123 |
-
'loading': 'Chargement...',
|
124 |
-
'error_no_api': 'Veuillez configurer NEBIUS_API_KEY',
|
125 |
-
'error_no_files': 'Veuillez télécharger des fichiers à analyser',
|
126 |
-
'report_exported': 'Rapport exporté avec succès comme',
|
127 |
-
'specialized_in': '🎯 Spécialisé dans:',
|
128 |
-
'metrics_analyzed': '📊 Métriques analysées:',
|
129 |
-
'what_analyzes': '🔍 Ce qu\'il analyse spécifiquement:',
|
130 |
-
'tips': '💡 Conseils pour de meilleurs résultats:',
|
131 |
-
'additional_specs': '📝 Spécifications supplémentaires pour l\'analyse',
|
132 |
-
'additional_specs_placeholder': 'Ajoutez des exigences spécifiques ou des domaines d\'intérêt pour l\'analyse...'
|
133 |
-
},
|
134 |
-
'de': {
|
135 |
-
'title': '🧬 Vergleichender Analysator für Biotechnologische Modelle',
|
136 |
-
'subtitle': 'Spezialisiert auf vergleichende Analyse von Modellanpassungsergebnissen',
|
137 |
-
'upload_files': '📁 Ergebnisse hochladen (CSV/Excel)',
|
138 |
-
'select_model': '🤖 Qwen Modell',
|
139 |
-
'select_language': '🌐 Sprache',
|
140 |
-
'select_theme': '🎨 Thema',
|
141 |
-
'detail_level': '📋 Detailgrad der Analyse',
|
142 |
-
'detailed': 'Detailliert',
|
143 |
-
'summarized': 'Zusammengefasst',
|
144 |
-
'analyze_button': '🚀 Analysieren und Vergleichen',
|
145 |
-
'export_format': '📄 Exportformat',
|
146 |
-
'export_button': '💾 Bericht Exportieren',
|
147 |
-
'comparative_analysis': '📊 Vergleichende Analyse',
|
148 |
-
'implementation_code': '💻 Implementierungscode',
|
149 |
-
'data_format': '📋 Erwartetes Datenformat',
|
150 |
-
'examples': '📚 Analysebeispiele',
|
151 |
-
'light': 'Hell',
|
152 |
-
'dark': 'Dunkel',
|
153 |
-
'best_for': 'Am besten für',
|
154 |
-
'loading': 'Laden...',
|
155 |
-
'error_no_api': 'Bitte konfigurieren Sie NEBIUS_API_KEY',
|
156 |
-
'error_no_files': 'Bitte laden Sie Dateien zur Analyse hoch',
|
157 |
-
'report_exported': 'Bericht erfolgreich exportiert als',
|
158 |
-
'specialized_in': '🎯 Spezialisiert auf:',
|
159 |
-
'metrics_analyzed': '📊 Analysierte Metriken:',
|
160 |
-
'what_analyzes': '🔍 Was spezifisch analysiert wird:',
|
161 |
-
'tips': '💡 Tipps für bessere Ergebnisse:',
|
162 |
-
'additional_specs': '📝 Zusätzliche Spezifikationen für die Analyse',
|
163 |
-
'additional_specs_placeholder': 'Fügen Sie spezifische Anforderungen oder Schwerpunktbereiche für die Analyse hinzu...'
|
164 |
-
},
|
165 |
-
'pt': {
|
166 |
-
'title': '🧬 Analisador Comparativo de Modelos Biotecnológicos',
|
167 |
-
'subtitle': 'Especializado em análise comparativa de resultados de ajuste',
|
168 |
-
'upload_files': '📁 Carregar resultados (CSV/Excel)',
|
169 |
-
'select_model': '🤖 Modelo Qwen',
|
170 |
-
'select_language': '🌐 Idioma',
|
171 |
-
'select_theme': '🎨 Tema',
|
172 |
-
'detail_level': '📋 Nível de detalhe',
|
173 |
-
'detailed': 'Detalhado',
|
174 |
-
'summarized': 'Resumido',
|
175 |
-
'analyze_button': '🚀 Analisar e Comparar',
|
176 |
-
'export_format': '📄 Formato de exportação',
|
177 |
-
'export_button': '💾 Exportar Relatório',
|
178 |
-
'comparative_analysis': '📊 Análise Comparativa',
|
179 |
-
'implementation_code': '💻 Código de Implementação',
|
180 |
-
'data_format': '📋 Formato de dados esperado',
|
181 |
-
'examples': '📚 Exemplos de análise',
|
182 |
-
'light': 'Claro',
|
183 |
-
'dark': 'Escuro',
|
184 |
-
'best_for': 'Melhor para',
|
185 |
-
'loading': 'Carregando...',
|
186 |
-
'error_no_api': 'Por favor configure NEBIUS_API_KEY',
|
187 |
-
'error_no_files': 'Por favor carregue arquivos para analisar',
|
188 |
-
'report_exported': 'Relatório exportado com sucesso como',
|
189 |
-
'specialized_in': '🎯 Especializado em:',
|
190 |
-
'metrics_analyzed': '📊 Métricas analisadas:',
|
191 |
-
'what_analyzes': '🔍 O que analisa especificamente:',
|
192 |
-
'tips': '💡 Dicas para melhores resultados:',
|
193 |
-
'additional_specs': '📝 Especificações adicionais para a análise',
|
194 |
-
'additional_specs_placeholder': 'Adicione requisitos específicos ou áreas de foco para a análise...'
|
195 |
}
|
196 |
}
|
197 |
|
@@ -300,20 +229,26 @@ QWEN_MODELS = {
|
|
300 |
"Qwen/Qwen3-14B": {
|
301 |
"name": "Qwen 3 14B",
|
302 |
"description": "Modelo potente multilingüe de Alibaba",
|
303 |
-
"max_tokens":
|
304 |
-
"best_for": "Análisis complejos y detallados"
|
|
|
|
|
305 |
},
|
306 |
"Qwen/Qwen3-7B": {
|
307 |
"name": "Qwen 3 7B",
|
308 |
"description": "Modelo equilibrado para uso general",
|
309 |
-
"max_tokens":
|
310 |
-
"best_for": "Análisis rápidos y precisos"
|
|
|
|
|
311 |
},
|
312 |
"Qwen/Qwen1.5-14B": {
|
313 |
"name": "Qwen 1.5 14B",
|
314 |
"description": "Modelo avanzado para tareas complejas",
|
315 |
-
"max_tokens":
|
316 |
-
"best_for": "Análisis técnicos detallados"
|
|
|
|
|
317 |
}
|
318 |
}
|
319 |
|
@@ -383,9 +318,6 @@ class ReportExporter:
|
|
383 |
title_text = {
|
384 |
'en': 'Comparative Analysis Report - Biotechnological Models',
|
385 |
'es': 'Informe de Análisis Comparativo - Modelos Biotecnológicos',
|
386 |
-
'fr': 'Rapport d\'Analyse Comparative - Modèles Biotechnologiques',
|
387 |
-
'de': 'Vergleichsanalysebericht - Biotechnologische Modelle',
|
388 |
-
'pt': 'Relatório de Análise Comparativa - Modelos Biotecnológicos'
|
389 |
}
|
390 |
|
391 |
doc.add_heading(title_text.get(language, title_text['en']), 0)
|
@@ -394,9 +326,6 @@ class ReportExporter:
|
|
394 |
date_text = {
|
395 |
'en': 'Generated on',
|
396 |
'es': 'Generado el',
|
397 |
-
'fr': 'Généré le',
|
398 |
-
'de': 'Erstellt am',
|
399 |
-
'pt': 'Gerado em'
|
400 |
}
|
401 |
doc.add_paragraph(f"{date_text.get(language, date_text['en'])}: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
402 |
doc.add_paragraph()
|
@@ -465,9 +394,6 @@ class ReportExporter:
|
|
465 |
title_text = {
|
466 |
'en': 'Comparative Analysis Report - Biotechnological Models',
|
467 |
'es': 'Informe de Análisis Comparativo - Modelos Biotecnológicos',
|
468 |
-
'fr': 'Rapport d\'Analyse Comparative - Modèles Biotechnologiques',
|
469 |
-
'de': 'Vergleichsanalysebericht - Biotechnologische Modelle',
|
470 |
-
'pt': 'Relatório de Análise Comparativa - Modelos Biotecnológicos'
|
471 |
}
|
472 |
|
473 |
story.append(Paragraph(title_text.get(language, title_text['en']), title_style))
|
@@ -476,9 +402,6 @@ class ReportExporter:
|
|
476 |
date_text = {
|
477 |
'en': 'Generated on',
|
478 |
'es': 'Generado el',
|
479 |
-
'fr': 'Généré le',
|
480 |
-
'de': 'Erstellt am',
|
481 |
-
'pt': 'Gerado em'
|
482 |
}
|
483 |
story.append(Paragraph(f"{date_text.get(language, date_text['en'])}: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", styles['Normal']))
|
484 |
story.append(Spacer(1, 0.5*inch))
|
@@ -521,8 +444,23 @@ class AIAnalyzer:
|
|
521 |
def __init__(self, client, model_registry):
|
522 |
self.client = client
|
523 |
self.model_registry = model_registry
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
524 |
|
525 |
-
def detect_analysis_type(self, content: Union[str, pd.DataFrame]) -> AnalysisType:
|
526 |
"""Detecta el tipo de análisis necesario"""
|
527 |
if isinstance(content, pd.DataFrame):
|
528 |
columns = [col.lower() for col in content.columns]
|
@@ -553,11 +491,17 @@ class AIAnalyzer:
|
|
553 |
try:
|
554 |
response = self.client.chat.completions.create(
|
555 |
model="Qwen/Qwen3-14B",
|
556 |
-
max_tokens=
|
557 |
temperature=0.0,
|
558 |
-
messages=[{"role": "user", "content": f"{prompt}\n\n{content[:
|
559 |
)
|
560 |
|
|
|
|
|
|
|
|
|
|
|
|
|
561 |
result = response.choices[0].message.content.strip().upper()
|
562 |
if "MODEL" in result:
|
563 |
return AnalysisType.MATHEMATICAL_MODEL
|
@@ -577,14 +521,12 @@ class AIAnalyzer:
|
|
577 |
prefixes = {
|
578 |
'en': "Please respond in English. ",
|
579 |
'es': "Por favor responde en español. ",
|
580 |
-
'fr': "Veuillez répondre en français. ",
|
581 |
-
'de': "Bitte antworten Sie auf Deutsch. ",
|
582 |
-
'pt': "Por favor responda em português. "
|
583 |
}
|
584 |
return prefixes.get(language, prefixes['en'])
|
585 |
|
586 |
def analyze_fitting_results(self, data: pd.DataFrame, qwen_model: str, detail_level: str = "detailed",
|
587 |
-
language: str = "en", additional_specs: str = ""
|
|
|
588 |
"""Analiza resultados de ajuste de modelos usando Qwen"""
|
589 |
|
590 |
# Preparar resumen completo de los datos
|
@@ -595,16 +537,10 @@ class AIAnalyzer:
|
|
595 |
- Columns: {list(data.columns)}
|
596 |
- Number of models evaluated: {len(data)}
|
597 |
|
598 |
-
Complete data:
|
599 |
-
{data.to_string()}
|
600 |
-
|
601 |
-
Descriptive statistics:
|
602 |
-
{data.describe().to_string()}
|
603 |
"""
|
604 |
|
605 |
-
# Extraer valores para usar en el código
|
606 |
-
data_dict = data.to_dict('records')
|
607 |
-
|
608 |
# Obtener prefijo de idioma
|
609 |
lang_prefix = self.get_language_prompt_prefix(language)
|
610 |
|
@@ -767,7 +703,7 @@ class AIAnalyzer:
|
|
767 |
# Análisis principal
|
768 |
response = self.client.chat.completions.create(
|
769 |
model=qwen_model,
|
770 |
-
max_tokens=
|
771 |
temperature=0.3,
|
772 |
messages=[{
|
773 |
"role": "user",
|
@@ -775,6 +711,13 @@ class AIAnalyzer:
|
|
775 |
}]
|
776 |
)
|
777 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
778 |
analysis_result = response.choices[0].message.content
|
779 |
|
780 |
# Generación de código
|
@@ -782,7 +725,7 @@ class AIAnalyzer:
|
|
782 |
{lang_prefix}
|
783 |
|
784 |
Based on the analysis and this actual data:
|
785 |
-
{data.to_string()}
|
786 |
|
787 |
Generate Python code that:
|
788 |
|
@@ -811,7 +754,7 @@ class AIAnalyzer:
|
|
811 |
|
812 |
code_response = self.client.chat.completions.create(
|
813 |
model=qwen_model,
|
814 |
-
max_tokens=
|
815 |
temperature=0.1,
|
816 |
messages=[{
|
817 |
"role": "user",
|
@@ -819,6 +762,13 @@ class AIAnalyzer:
|
|
819 |
}]
|
820 |
)
|
821 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
822 |
code_result = code_response.choices[0].message.content
|
823 |
|
824 |
return {
|
@@ -832,21 +782,35 @@ class AIAnalyzer:
|
|
832 |
for metric in ['r2', 'rmse', 'aic', 'bic', 'mse'])],
|
833 |
"mejor_r2": data['R2'].max() if 'R2' in data.columns else None,
|
834 |
"mejor_modelo_r2": data.loc[data['R2'].idxmax()]['Model'] if 'R2' in data.columns and 'Model' in data.columns else None,
|
835 |
-
"datos_completos": data_dict # Incluir todos los datos para el código
|
836 |
}
|
837 |
}
|
838 |
|
839 |
except Exception as e:
|
840 |
print(f"Error en análisis: {str(e)}")
|
841 |
return {"error": str(e)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
842 |
|
843 |
def process_files(files, qwen_model: str, detail_level: str = "detailed",
|
844 |
-
language: str = "en", additional_specs: str = ""
|
|
|
845 |
"""Procesa múltiples archivos usando Qwen"""
|
846 |
processor = FileProcessor()
|
847 |
analyzer = AIAnalyzer(client, model_registry)
|
|
|
|
|
848 |
results = []
|
849 |
all_code = []
|
|
|
850 |
|
851 |
for file in files:
|
852 |
if file is None:
|
@@ -861,20 +825,26 @@ def process_files(files, qwen_model: str, detail_level: str = "detailed",
|
|
861 |
if file_ext in ['.csv', '.xlsx', '.xls']:
|
862 |
if language == 'es':
|
863 |
results.append(f"## 📊 Análisis de Resultados: {file_name}")
|
|
|
864 |
else:
|
865 |
results.append(f"## 📊 Results Analysis: {file_name}")
|
|
|
866 |
|
867 |
if file_ext == '.csv':
|
868 |
df = processor.read_csv(file_content)
|
|
|
869 |
else:
|
870 |
df = processor.read_excel(file_content)
|
|
|
871 |
|
872 |
if df is not None:
|
873 |
-
analysis_type = analyzer.detect_analysis_type(df)
|
|
|
874 |
|
875 |
if analysis_type == AnalysisType.FITTING_RESULTS:
|
876 |
result = analyzer.analyze_fitting_results(
|
877 |
-
df, qwen_model, detail_level, language, additional_specs
|
|
|
878 |
)
|
879 |
|
880 |
if language == 'es':
|
@@ -887,367 +857,56 @@ def process_files(files, qwen_model: str, detail_level: str = "detailed",
|
|
887 |
all_code.append(result["codigo_implementacion"])
|
888 |
|
889 |
results.append("\n---\n")
|
|
|
890 |
|
891 |
analysis_text = "\n".join(results)
|
892 |
code_text = "\n\n# " + "="*50 + "\n\n".join(all_code) if all_code else generate_implementation_code(analysis_text)
|
|
|
893 |
|
894 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
895 |
|
896 |
def generate_implementation_code(analysis_results: str) -> str:
|
897 |
"""Genera código de implementación con análisis por experimento"""
|
898 |
-
|
899 |
-
|
900 |
-
import pandas as pd
|
901 |
-
import matplotlib.pyplot as plt
|
902 |
-
from scipy.integrate import odeint
|
903 |
-
from scipy.optimize import curve_fit, differential_evolution
|
904 |
-
from sklearn.metrics import r2_score, mean_squared_error
|
905 |
-
import seaborn as sns
|
906 |
-
from typing import Dict, List, Tuple, Optional
|
907 |
-
|
908 |
-
# Visualization configuration
|
909 |
-
plt.style.use('seaborn-v0_8-darkgrid')
|
910 |
-
sns.set_palette("husl")
|
911 |
-
|
912 |
-
class ExperimentalModelAnalyzer:
|
913 |
-
\"\"\"
|
914 |
-
Class for comparative analysis of biotechnological models across multiple experiments.
|
915 |
-
Analyzes biomass, substrate and product models separately for each experimental condition.
|
916 |
-
\"\"\"
|
917 |
-
|
918 |
-
def __init__(self):
|
919 |
-
self.results_df = None
|
920 |
-
self.experiments = {}
|
921 |
-
self.best_models_by_experiment = {}
|
922 |
-
self.overall_best_models = {
|
923 |
-
'biomass': None,
|
924 |
-
'substrate': None,
|
925 |
-
'product': None
|
926 |
-
}
|
927 |
-
|
928 |
-
def load_results(self, file_path: str = None, data_dict: dict = None) -> pd.DataFrame:
|
929 |
-
\"\"\"Load fitting results from CSV/Excel file or dictionary\"\"\"
|
930 |
-
if data_dict:
|
931 |
-
self.results_df = pd.DataFrame(data_dict)
|
932 |
-
elif file_path:
|
933 |
-
if file_path.endswith('.csv'):
|
934 |
-
self.results_df = pd.read_csv(file_path)
|
935 |
-
else:
|
936 |
-
self.results_df = pd.read_excel(file_path)
|
937 |
-
|
938 |
-
print(f"✅ Data loaded: {len(self.results_df)} models")
|
939 |
-
print(f"📊 Available columns: {list(self.results_df.columns)}")
|
940 |
-
|
941 |
-
# Identify experiments
|
942 |
-
if 'Experiment' in self.results_df.columns:
|
943 |
-
self.experiments = self.results_df.groupby('Experiment').groups
|
944 |
-
print(f"🧪 Experiments found: {list(self.experiments.keys())}")
|
945 |
-
|
946 |
-
return self.results_df
|
947 |
-
|
948 |
-
def analyze_by_experiment(self,
|
949 |
-
experiment_col: str = 'Experiment',
|
950 |
-
model_col: str = 'Model',
|
951 |
-
type_col: str = 'Type',
|
952 |
-
r2_col: str = 'R2',
|
953 |
-
rmse_col: str = 'RMSE') -> Dict:
|
954 |
-
\"\"\"
|
955 |
-
Analyze models by experiment and variable type.
|
956 |
-
Identifies best models for biomass, substrate, and product in each experiment.
|
957 |
-
\"\"\"
|
958 |
-
if self.results_df is None:
|
959 |
-
raise ValueError("First load data with load_results()")
|
960 |
-
|
961 |
-
results_by_exp = {}
|
962 |
-
|
963 |
-
# Get unique experiments
|
964 |
-
if experiment_col in self.results_df.columns:
|
965 |
-
experiments = self.results_df[experiment_col].unique()
|
966 |
-
else:
|
967 |
-
experiments = ['All_Data']
|
968 |
-
self.results_df[experiment_col] = 'All_Data'
|
969 |
-
|
970 |
-
print("\\n" + "="*80)
|
971 |
-
print("📊 ANALYSIS BY EXPERIMENT AND VARIABLE TYPE")
|
972 |
-
print("="*80)
|
973 |
-
|
974 |
-
for exp in experiments:
|
975 |
-
print(f"\\n🧪 EXPERIMENT: {exp}")
|
976 |
-
print("-"*50)
|
977 |
-
|
978 |
-
exp_data = self.results_df[self.results_df[experiment_col] == exp]
|
979 |
-
results_by_exp[exp] = {}
|
980 |
-
|
981 |
-
# Analyze by variable type if available
|
982 |
-
if type_col in exp_data.columns:
|
983 |
-
var_types = exp_data[type_col].unique()
|
984 |
-
|
985 |
-
for var_type in var_types:
|
986 |
-
var_data = exp_data[exp_data[type_col] == var_type]
|
987 |
-
|
988 |
-
if not var_data.empty:
|
989 |
-
# Find best model for this variable type
|
990 |
-
best_idx = var_data[r2_col].idxmax()
|
991 |
-
best_model = var_data.loc[best_idx]
|
992 |
-
|
993 |
-
results_by_exp[exp][var_type] = {
|
994 |
-
'best_model': best_model[model_col],
|
995 |
-
'r2': best_model[r2_col],
|
996 |
-
'rmse': best_model[rmse_col],
|
997 |
-
'all_models': var_data[[model_col, r2_col, rmse_col]].to_dict('records')
|
998 |
-
}
|
999 |
-
|
1000 |
-
print(f"\\n 📈 {var_type.upper()}:")
|
1001 |
-
print(f" Best Model: {best_model[model_col]}")
|
1002 |
-
print(f" R² = {best_model[r2_col]:.4f}")
|
1003 |
-
print(f" RMSE = {best_model[rmse_col]:.4f}")
|
1004 |
-
|
1005 |
-
# Show all models for this variable
|
1006 |
-
print(f"\\n All {var_type} models tested:")
|
1007 |
-
for _, row in var_data.iterrows():
|
1008 |
-
print(f" - {row[model_col]}: R²={row[r2_col]:.4f}, RMSE={row[rmse_col]:.4f}")
|
1009 |
-
else:
|
1010 |
-
# If no type column, analyze all models together
|
1011 |
-
best_idx = exp_data[r2_col].idxmax()
|
1012 |
-
best_model = exp_data.loc[best_idx]
|
1013 |
-
|
1014 |
-
results_by_exp[exp]['all'] = {
|
1015 |
-
'best_model': best_model[model_col],
|
1016 |
-
'r2': best_model[r2_col],
|
1017 |
-
'rmse': best_model[rmse_col],
|
1018 |
-
'all_models': exp_data[[model_col, r2_col, rmse_col]].to_dict('records')
|
1019 |
-
}
|
1020 |
-
|
1021 |
-
self.best_models_by_experiment = results_by_exp
|
1022 |
-
|
1023 |
-
# Determine overall best models
|
1024 |
-
self._determine_overall_best_models()
|
1025 |
-
|
1026 |
-
return results_by_exp
|
1027 |
-
|
1028 |
-
def _determine_overall_best_models(self):
|
1029 |
-
\"\"\"Determine the best models across all experiments\"\"\"
|
1030 |
-
print("\\n" + "="*80)
|
1031 |
-
print("🏆 OVERALL BEST MODELS ACROSS ALL EXPERIMENTS")
|
1032 |
-
print("="*80)
|
1033 |
-
|
1034 |
-
# Aggregate performance by model and type
|
1035 |
-
model_performance = {}
|
1036 |
-
|
1037 |
-
for exp, exp_results in self.best_models_by_experiment.items():
|
1038 |
-
for var_type, var_results in exp_results.items():
|
1039 |
-
if var_type not in model_performance:
|
1040 |
-
model_performance[var_type] = {}
|
1041 |
-
|
1042 |
-
for model_data in var_results['all_models']:
|
1043 |
-
model_name = model_data['Model']
|
1044 |
-
if model_name not in model_performance[var_type]:
|
1045 |
-
model_performance[var_type][model_name] = {
|
1046 |
-
'r2_values': [],
|
1047 |
-
'rmse_values': [],
|
1048 |
-
'experiments': []
|
1049 |
-
}
|
1050 |
-
|
1051 |
-
model_performance[var_type][model_name]['r2_values'].append(model_data['R2'])
|
1052 |
-
model_performance[var_type][model_name]['rmse_values'].append(model_data['RMSE'])
|
1053 |
-
model_performance[var_type][model_name]['experiments'].append(exp)
|
1054 |
-
|
1055 |
-
# Calculate average performance and select best
|
1056 |
-
for var_type, models in model_performance.items():
|
1057 |
-
best_avg_r2 = -1
|
1058 |
-
best_model = None
|
1059 |
-
|
1060 |
-
print(f"\\n📊 {var_type.upper()} MODELS:")
|
1061 |
-
for model_name, perf_data in models.items():
|
1062 |
-
avg_r2 = np.mean(perf_data['r2_values'])
|
1063 |
-
avg_rmse = np.mean(perf_data['rmse_values'])
|
1064 |
-
n_exp = len(perf_data['experiments'])
|
1065 |
-
|
1066 |
-
print(f" {model_name}:")
|
1067 |
-
print(f" Average R² = {avg_r2:.4f}")
|
1068 |
-
print(f" Average RMSE = {avg_rmse:.4f}")
|
1069 |
-
print(f" Tested in {n_exp} experiments")
|
1070 |
-
|
1071 |
-
if avg_r2 > best_avg_r2:
|
1072 |
-
best_avg_r2 = avg_r2
|
1073 |
-
best_model = {
|
1074 |
-
'name': model_name,
|
1075 |
-
'avg_r2': avg_r2,
|
1076 |
-
'avg_rmse': avg_rmse,
|
1077 |
-
'n_experiments': n_exp
|
1078 |
-
}
|
1079 |
-
|
1080 |
-
if var_type.lower() in ['biomass', 'substrate', 'product']:
|
1081 |
-
self.overall_best_models[var_type.lower()] = best_model
|
1082 |
-
print(f"\\n 🏆 BEST {var_type.upper()} MODEL: {best_model['name']} (Avg R²={best_model['avg_r2']:.4f})")
|
1083 |
-
|
1084 |
-
def create_comparison_visualizations(self):
|
1085 |
-
\"\"\"Create visualizations comparing models across experiments\"\"\"
|
1086 |
-
if not self.best_models_by_experiment:
|
1087 |
-
raise ValueError("First run analyze_by_experiment()")
|
1088 |
-
|
1089 |
-
# Prepare data for visualization
|
1090 |
-
experiments = []
|
1091 |
-
biomass_r2 = []
|
1092 |
-
substrate_r2 = []
|
1093 |
-
product_r2 = []
|
1094 |
-
|
1095 |
-
for exp, results in self.best_models_by_experiment.items():
|
1096 |
-
experiments.append(exp)
|
1097 |
-
biomass_r2.append(results.get('Biomass', {}).get('r2', 0))
|
1098 |
-
substrate_r2.append(results.get('Substrate', {}).get('r2', 0))
|
1099 |
-
product_r2.append(results.get('Product', {}).get('r2', 0))
|
1100 |
-
|
1101 |
-
# Create figure with subplots
|
1102 |
-
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
|
1103 |
-
fig.suptitle('Model Performance Comparison Across Experiments', fontsize=16)
|
1104 |
-
|
1105 |
-
# 1. R² comparison by experiment and variable type
|
1106 |
-
ax1 = axes[0, 0]
|
1107 |
-
x = np.arange(len(experiments))
|
1108 |
-
width = 0.25
|
1109 |
-
|
1110 |
-
ax1.bar(x - width, biomass_r2, width, label='Biomass', color='green', alpha=0.8)
|
1111 |
-
ax1.bar(x, substrate_r2, width, label='Substrate', color='blue', alpha=0.8)
|
1112 |
-
ax1.bar(x + width, product_r2, width, label='Product', color='red', alpha=0.8)
|
1113 |
-
|
1114 |
-
ax1.set_xlabel('Experiment')
|
1115 |
-
ax1.set_ylabel('R²')
|
1116 |
-
ax1.set_title('Best Model R² by Experiment and Variable Type')
|
1117 |
-
ax1.set_xticks(x)
|
1118 |
-
ax1.set_xticklabels(experiments, rotation=45, ha='right')
|
1119 |
-
ax1.legend()
|
1120 |
-
ax1.grid(True, alpha=0.3)
|
1121 |
-
|
1122 |
-
# Add value labels
|
1123 |
-
for i, (b, s, p) in enumerate(zip(biomass_r2, substrate_r2, product_r2)):
|
1124 |
-
if b > 0: ax1.text(i - width, b + 0.01, f'{b:.3f}', ha='center', va='bottom', fontsize=8)
|
1125 |
-
if s > 0: ax1.text(i, s + 0.01, f'{s:.3f}', ha='center', va='bottom', fontsize=8)
|
1126 |
-
if p > 0: ax1.text(i + width, p + 0.01, f'{p:.3f}', ha='center', va='bottom', fontsize=8)
|
1127 |
-
|
1128 |
-
# 2. Model frequency heatmap
|
1129 |
-
ax2 = axes[0, 1]
|
1130 |
-
# This would show which models appear most frequently as best
|
1131 |
-
# Implementation depends on actual data structure
|
1132 |
-
ax2.text(0.5, 0.5, 'Model Frequency Analysis\\n(Most Used Models)',
|
1133 |
-
ha='center', va='center', transform=ax2.transAxes)
|
1134 |
-
ax2.set_title('Most Frequently Selected Models')
|
1135 |
-
|
1136 |
-
# 3. Parameter evolution across experiments
|
1137 |
-
ax3 = axes[1, 0]
|
1138 |
-
ax3.text(0.5, 0.5, 'Parameter Evolution\\nAcross Experiments',
|
1139 |
-
ha='center', va='center', transform=ax3.transAxes)
|
1140 |
-
ax3.set_title('Parameter Trends')
|
1141 |
-
|
1142 |
-
# 4. Overall best models summary
|
1143 |
-
ax4 = axes[1, 1]
|
1144 |
-
ax4.axis('off')
|
1145 |
-
|
1146 |
-
summary_text = "🏆 OVERALL BEST MODELS\\n\\n"
|
1147 |
-
for var_type, model_info in self.overall_best_models.items():
|
1148 |
-
if model_info:
|
1149 |
-
summary_text += f"{var_type.upper()}:\\n"
|
1150 |
-
summary_text += f" Model: {model_info['name']}\\n"
|
1151 |
-
summary_text += f" Avg R²: {model_info['avg_r2']:.4f}\\n"
|
1152 |
-
summary_text += f" Tested in: {model_info['n_experiments']} experiments\\n\\n"
|
1153 |
-
|
1154 |
-
ax4.text(0.1, 0.9, summary_text, transform=ax4.transAxes,
|
1155 |
-
fontsize=12, verticalalignment='top', fontfamily='monospace')
|
1156 |
-
ax4.set_title('Overall Best Models Summary')
|
1157 |
-
|
1158 |
-
plt.tight_layout()
|
1159 |
-
plt.show()
|
1160 |
-
|
1161 |
-
def generate_summary_table(self) -> pd.DataFrame:
|
1162 |
-
\"\"\"Generate a summary table of best models by experiment and type\"\"\"
|
1163 |
-
summary_data = []
|
1164 |
-
|
1165 |
-
for exp, results in self.best_models_by_experiment.items():
|
1166 |
-
for var_type, var_results in results.items():
|
1167 |
-
summary_data.append({
|
1168 |
-
'Experiment': exp,
|
1169 |
-
'Variable_Type': var_type,
|
1170 |
-
'Best_Model': var_results['best_model'],
|
1171 |
-
'R2': var_results['r2'],
|
1172 |
-
'RMSE': var_results['rmse']
|
1173 |
-
})
|
1174 |
-
|
1175 |
-
summary_df = pd.DataFrame(summary_data)
|
1176 |
-
|
1177 |
-
print("\\n📋 SUMMARY TABLE: BEST MODELS BY EXPERIMENT AND VARIABLE TYPE")
|
1178 |
-
print("="*80)
|
1179 |
-
print(summary_df.to_string(index=False))
|
1180 |
-
|
1181 |
-
return summary_df
|
1182 |
-
|
1183 |
-
# Example usage
|
1184 |
-
if __name__ == "__main__":
|
1185 |
-
print("🧬 Experimental Model Comparison System")
|
1186 |
-
print("="*60)
|
1187 |
-
|
1188 |
-
# Example data structure with experiments
|
1189 |
-
example_data = {
|
1190 |
-
'Experiment': ['pH_7.0', 'pH_7.0', 'pH_7.0', 'pH_7.5', 'pH_7.5', 'pH_7.5',
|
1191 |
-
'pH_7.0', 'pH_7.0', 'pH_7.5', 'pH_7.5',
|
1192 |
-
'pH_7.0', 'pH_7.0', 'pH_7.5', 'pH_7.5'],
|
1193 |
-
'Model': ['Monod', 'Logistic', 'Gompertz', 'Monod', 'Logistic', 'Gompertz',
|
1194 |
-
'First_Order', 'Monod_Substrate', 'First_Order', 'Monod_Substrate',
|
1195 |
-
'Luedeking_Piret', 'Linear', 'Luedeking_Piret', 'Linear'],
|
1196 |
-
'Type': ['Biomass', 'Biomass', 'Biomass', 'Biomass', 'Biomass', 'Biomass',
|
1197 |
-
'Substrate', 'Substrate', 'Substrate', 'Substrate',
|
1198 |
-
'Product', 'Product', 'Product', 'Product'],
|
1199 |
-
'R2': [0.9845, 0.9912, 0.9956, 0.9789, 0.9834, 0.9901,
|
1200 |
-
0.9723, 0.9856, 0.9698, 0.9812,
|
1201 |
-
0.9634, 0.9512, 0.9687, 0.9423],
|
1202 |
-
'RMSE': [0.0234, 0.0189, 0.0145, 0.0267, 0.0223, 0.0178,
|
1203 |
-
0.0312, 0.0245, 0.0334, 0.0289,
|
1204 |
-
0.0412, 0.0523, 0.0389, 0.0567],
|
1205 |
-
'mu_max': [0.45, 0.48, 0.52, 0.42, 0.44, 0.49,
|
1206 |
-
None, None, None, None, None, None, None, None],
|
1207 |
-
'Ks': [None, None, None, None, None, None,
|
1208 |
-
2.1, 1.8, 2.3, 1.9, None, None, None, None]
|
1209 |
-
}
|
1210 |
-
|
1211 |
-
# Create analyzer
|
1212 |
-
analyzer = ExperimentalModelAnalyzer()
|
1213 |
-
|
1214 |
-
# Load data
|
1215 |
-
analyzer.load_results(data_dict=example_data)
|
1216 |
-
|
1217 |
-
# Analyze by experiment
|
1218 |
-
results = analyzer.analyze_by_experiment()
|
1219 |
-
|
1220 |
-
# Create visualizations
|
1221 |
-
analyzer.create_comparison_visualizations()
|
1222 |
-
|
1223 |
-
# Generate summary table
|
1224 |
-
summary = analyzer.generate_summary_table()
|
1225 |
-
|
1226 |
-
print("\\n✨ Analysis complete! Best models identified for each experiment and variable type.")
|
1227 |
-
"""
|
1228 |
-
|
1229 |
-
return code
|
1230 |
|
1231 |
# Estado global para almacenar resultados
|
1232 |
class AppState:
|
1233 |
def __init__(self):
|
|
|
1234 |
self.current_analysis = ""
|
1235 |
self.current_code = ""
|
1236 |
self.current_language = "en"
|
|
|
1237 |
|
1238 |
app_state = AppState()
|
1239 |
|
1240 |
def export_report(export_format: str, language: str) -> Tuple[str, str]:
|
1241 |
"""Exporta el reporte al formato seleccionado"""
|
1242 |
if not app_state.current_analysis:
|
1243 |
-
error_msg =
|
1244 |
-
|
1245 |
-
'es': "No hay análisis disponible para exportar",
|
1246 |
-
'fr': "Aucune analyse disponible pour exporter",
|
1247 |
-
'de': "Keine Analyse zum Exportieren verfügbar",
|
1248 |
-
'pt': "Nenhuma análise disponível para exportar"
|
1249 |
-
}
|
1250 |
-
return error_msg.get(language, error_msg['en']), ""
|
1251 |
|
1252 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
1253 |
|
@@ -1284,26 +943,47 @@ def create_interface():
|
|
1284 |
gr.update(label=t['select_theme']), # theme_selector
|
1285 |
gr.update(label=t['detail_level']), # detail_level
|
1286 |
gr.update(label=t['additional_specs'], placeholder=t['additional_specs_placeholder']), # additional_specs
|
|
|
|
|
1287 |
gr.update(value=t['analyze_button']), # analyze_btn
|
1288 |
gr.update(label=t['export_format']), # export_format
|
1289 |
gr.update(value=t['export_button']), # export_btn
|
1290 |
-
gr.update(label=t['
|
1291 |
-
gr.update(label=t['
|
|
|
|
|
1292 |
gr.update(label=t['data_format']) # data_format_accordion
|
1293 |
]
|
1294 |
|
1295 |
-
def process_and_store(files, model, detail, language, additional_specs):
|
1296 |
"""Procesa archivos y almacena resultados"""
|
1297 |
if not files:
|
1298 |
error_msg = TRANSLATIONS[language]['error_no_files']
|
1299 |
-
return error_msg, ""
|
1300 |
|
1301 |
-
analysis, code = process_files(
|
|
|
|
|
|
|
|
|
|
|
1302 |
app_state.current_analysis = analysis
|
1303 |
app_state.current_code = code
|
1304 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1305 |
|
1306 |
-
with gr.Blocks(theme=THEMES[current_theme]) as demo:
|
1307 |
# Componentes de UI
|
1308 |
with gr.Row():
|
1309 |
with gr.Column(scale=3):
|
@@ -1312,8 +992,7 @@ def create_interface():
|
|
1312 |
with gr.Column(scale=1):
|
1313 |
with gr.Row():
|
1314 |
language_selector = gr.Dropdown(
|
1315 |
-
choices=[("English", "en"), ("Español", "es"),
|
1316 |
-
("Deutsch", "de"), ("Português", "pt")],
|
1317 |
value="en",
|
1318 |
label=TRANSLATIONS[current_language]['select_language'],
|
1319 |
interactive=True
|
@@ -1350,7 +1029,6 @@ def create_interface():
|
|
1350 |
label=TRANSLATIONS[current_language]['detail_level']
|
1351 |
)
|
1352 |
|
1353 |
-
# Nueva entrada para especificaciones adicionales
|
1354 |
additional_specs = gr.Textbox(
|
1355 |
label=TRANSLATIONS[current_language]['additional_specs'],
|
1356 |
placeholder=TRANSLATIONS[current_language]['additional_specs_placeholder'],
|
@@ -1359,6 +1037,25 @@ def create_interface():
|
|
1359 |
interactive=True
|
1360 |
)
|
1361 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1362 |
analyze_btn = gr.Button(
|
1363 |
TRANSLATIONS[current_language]['analyze_button'],
|
1364 |
variant="primary",
|
@@ -1390,15 +1087,24 @@ def create_interface():
|
|
1390 |
)
|
1391 |
|
1392 |
with gr.Column(scale=2):
|
|
|
|
|
|
|
|
|
|
|
1393 |
analysis_output = gr.Markdown(
|
1394 |
-
label=TRANSLATIONS[current_language]['
|
1395 |
)
|
1396 |
|
1397 |
code_output = gr.Code(
|
1398 |
-
label=TRANSLATIONS[current_language]['
|
1399 |
language="python",
|
1400 |
interactive=True,
|
1401 |
-
lines=
|
|
|
|
|
|
|
|
|
1402 |
)
|
1403 |
|
1404 |
data_format_accordion = gr.Accordion(
|
@@ -1425,32 +1131,21 @@ def create_interface():
|
|
1425 |
- **Parameters**: Model-specific parameters
|
1426 |
""")
|
1427 |
|
1428 |
-
#
|
1429 |
-
examples = gr.Examples(
|
1430 |
-
examples=[
|
1431 |
-
[["examples/biomass_models_comparison.csv"], "Qwen/Qwen3-14B", "detailed", ""],
|
1432 |
-
[["examples/substrate_kinetics_results.xlsx"], "Qwen/Qwen3-14B", "summarized", "Focus on temperature effects"]
|
1433 |
-
],
|
1434 |
-
inputs=[files_input, model_selector, detail_level, additional_specs],
|
1435 |
-
label=TRANSLATIONS[current_language]['examples']
|
1436 |
-
)
|
1437 |
-
|
1438 |
-
# Eventos - Actualizado para incluir additional_specs
|
1439 |
language_selector.change(
|
1440 |
update_interface_language,
|
1441 |
inputs=[language_selector],
|
1442 |
outputs=[
|
1443 |
title_text, subtitle_text, files_input, model_selector,
|
1444 |
language_selector, theme_selector, detail_level, additional_specs,
|
1445 |
-
|
1446 |
-
code_output,
|
|
|
1447 |
]
|
1448 |
)
|
1449 |
|
1450 |
def change_theme(theme_name):
|
1451 |
"""Cambia el tema de la interfaz"""
|
1452 |
-
# Nota: En Gradio actual, cambiar el tema dinámicamente requiere recargar
|
1453 |
-
# Esta es una limitación conocida
|
1454 |
return gr.Info("Theme will be applied on next page load")
|
1455 |
|
1456 |
theme_selector.change(
|
@@ -1461,8 +1156,9 @@ def create_interface():
|
|
1461 |
|
1462 |
analyze_btn.click(
|
1463 |
fn=process_and_store,
|
1464 |
-
inputs=[files_input, model_selector, detail_level, language_selector,
|
1465 |
-
|
|
|
1466 |
)
|
1467 |
|
1468 |
def handle_export(format, language):
|
|
|
25 |
from reportlab.pdfbase.ttfonts import TTFont
|
26 |
import matplotlib.pyplot as plt
|
27 |
from datetime import datetime
|
28 |
+
from openai import OpenAI
|
29 |
|
30 |
# Configuración para HuggingFace
|
31 |
os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
|
|
|
36 |
api_key=os.environ.get("NEBIUS_API_KEY")
|
37 |
)
|
38 |
|
39 |
+
# Sistema de traducción
|
40 |
TRANSLATIONS = {
|
41 |
'en': {
|
42 |
'title': '🧬 Comparative Analyzer of Biotechnological Models',
|
|
|
67 |
'what_analyzes': '🔍 What it specifically analyzes:',
|
68 |
'tips': '💡 Tips for better results:',
|
69 |
'additional_specs': '📝 Additional specifications for analysis',
|
70 |
+
'additional_specs_placeholder': 'Add any specific requirements or focus areas for the analysis...',
|
71 |
+
'input_tokens': '🔢 Input tokens (0-1M)',
|
72 |
+
'output_tokens': '🔢 Output tokens (0-1M)',
|
73 |
+
'token_info': 'ℹ️ Token usage information',
|
74 |
+
'input_token_count': 'Input tokens used',
|
75 |
+
'output_token_count': 'Output tokens used',
|
76 |
+
'total_token_count': 'Total tokens used',
|
77 |
+
'token_cost': 'Estimated cost',
|
78 |
+
'thinking_process': '🧠 Thinking Process',
|
79 |
+
'analysis_report': '📊 Analysis Report',
|
80 |
+
'code_output': '💻 Implementation Code',
|
81 |
+
'token_usage': '💰 Token Usage'
|
82 |
},
|
83 |
'es': {
|
84 |
'title': '🧬 Analizador Comparativo de Modelos Biotecnológicos',
|
|
|
109 |
'what_analyzes': '🔍 Qué analiza específicamente:',
|
110 |
'tips': '💡 Tips para mejores resultados:',
|
111 |
'additional_specs': '📝 Especificaciones adicionales para el análisis',
|
112 |
+
'additional_specs_placeholder': 'Agregue cualquier requerimiento específico o áreas de enfoque para el análisis...',
|
113 |
+
'input_tokens': '🔢 Tokens de entrada (0-1M)',
|
114 |
+
'output_tokens': '🔢 Tokens de salida (0-1M)',
|
115 |
+
'token_info': 'ℹ️ Información de uso de tokens',
|
116 |
+
'input_token_count': 'Tokens de entrada usados',
|
117 |
+
'output_token_count': 'Tokens de salida usados',
|
118 |
+
'total_token_count': 'Total de tokens usados',
|
119 |
+
'token_cost': 'Costo estimado',
|
120 |
+
'thinking_process': '🧠 Proceso de Pensamiento',
|
121 |
+
'analysis_report': '📊 Reporte de Análisis',
|
122 |
+
'code_output': '💻 Código de Implementación',
|
123 |
+
'token_usage': '💰 Uso de Tokens'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
}
|
125 |
}
|
126 |
|
|
|
229 |
"Qwen/Qwen3-14B": {
|
230 |
"name": "Qwen 3 14B",
|
231 |
"description": "Modelo potente multilingüe de Alibaba",
|
232 |
+
"max_tokens": 1000000,
|
233 |
+
"best_for": "Análisis complejos y detallados",
|
234 |
+
"input_cost": 0.0000007,
|
235 |
+
"output_cost": 0.0000021
|
236 |
},
|
237 |
"Qwen/Qwen3-7B": {
|
238 |
"name": "Qwen 3 7B",
|
239 |
"description": "Modelo equilibrado para uso general",
|
240 |
+
"max_tokens": 1000000,
|
241 |
+
"best_for": "Análisis rápidos y precisos",
|
242 |
+
"input_cost": 0.00000035,
|
243 |
+
"output_cost": 0.00000105
|
244 |
},
|
245 |
"Qwen/Qwen1.5-14B": {
|
246 |
"name": "Qwen 1.5 14B",
|
247 |
"description": "Modelo avanzado para tareas complejas",
|
248 |
+
"max_tokens": 1000000,
|
249 |
+
"best_for": "Análisis técnicos detallados",
|
250 |
+
"input_cost": 0.0000007,
|
251 |
+
"output_cost": 0.0000021
|
252 |
}
|
253 |
}
|
254 |
|
|
|
318 |
title_text = {
|
319 |
'en': 'Comparative Analysis Report - Biotechnological Models',
|
320 |
'es': 'Informe de Análisis Comparativo - Modelos Biotecnológicos',
|
|
|
|
|
|
|
321 |
}
|
322 |
|
323 |
doc.add_heading(title_text.get(language, title_text['en']), 0)
|
|
|
326 |
date_text = {
|
327 |
'en': 'Generated on',
|
328 |
'es': 'Generado el',
|
|
|
|
|
|
|
329 |
}
|
330 |
doc.add_paragraph(f"{date_text.get(language, date_text['en'])}: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
331 |
doc.add_paragraph()
|
|
|
394 |
title_text = {
|
395 |
'en': 'Comparative Analysis Report - Biotechnological Models',
|
396 |
'es': 'Informe de Análisis Comparativo - Modelos Biotecnológicos',
|
|
|
|
|
|
|
397 |
}
|
398 |
|
399 |
story.append(Paragraph(title_text.get(language, title_text['en']), title_style))
|
|
|
402 |
date_text = {
|
403 |
'en': 'Generated on',
|
404 |
'es': 'Generado el',
|
|
|
|
|
|
|
405 |
}
|
406 |
story.append(Paragraph(f"{date_text.get(language, date_text['en'])}: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", styles['Normal']))
|
407 |
story.append(Spacer(1, 0.5*inch))
|
|
|
444 |
def __init__(self, client, model_registry):
|
445 |
self.client = client
|
446 |
self.model_registry = model_registry
|
447 |
+
self.token_usage = {
|
448 |
+
'input_tokens': 0,
|
449 |
+
'output_tokens': 0,
|
450 |
+
'total_tokens': 0,
|
451 |
+
'estimated_cost': 0.0
|
452 |
+
}
|
453 |
+
|
454 |
+
def reset_token_usage(self):
|
455 |
+
"""Reinicia el contador de tokens"""
|
456 |
+
self.token_usage = {
|
457 |
+
'input_tokens': 0,
|
458 |
+
'output_tokens': 0,
|
459 |
+
'total_tokens': 0,
|
460 |
+
'estimated_cost': 0.0
|
461 |
+
}
|
462 |
|
463 |
+
def detect_analysis_type(self, content: Union[str, pd.DataFrame], max_tokens: int = 1000) -> AnalysisType:
|
464 |
"""Detecta el tipo de análisis necesario"""
|
465 |
if isinstance(content, pd.DataFrame):
|
466 |
columns = [col.lower() for col in content.columns]
|
|
|
491 |
try:
|
492 |
response = self.client.chat.completions.create(
|
493 |
model="Qwen/Qwen3-14B",
|
494 |
+
max_tokens=min(max_tokens, 100),
|
495 |
temperature=0.0,
|
496 |
+
messages=[{"role": "user", "content": f"{prompt}\n\n{content[:5000]}"}]
|
497 |
)
|
498 |
|
499 |
+
# Registrar uso de tokens
|
500 |
+
if response.usage:
|
501 |
+
self.token_usage['input_tokens'] += response.usage.prompt_tokens
|
502 |
+
self.token_usage['output_tokens'] += response.usage.completion_tokens
|
503 |
+
self.token_usage['total_tokens'] += response.usage.total_tokens
|
504 |
+
|
505 |
result = response.choices[0].message.content.strip().upper()
|
506 |
if "MODEL" in result:
|
507 |
return AnalysisType.MATHEMATICAL_MODEL
|
|
|
521 |
prefixes = {
|
522 |
'en': "Please respond in English. ",
|
523 |
'es': "Por favor responde en español. ",
|
|
|
|
|
|
|
524 |
}
|
525 |
return prefixes.get(language, prefixes['en'])
|
526 |
|
527 |
def analyze_fitting_results(self, data: pd.DataFrame, qwen_model: str, detail_level: str = "detailed",
|
528 |
+
language: str = "en", additional_specs: str = "",
|
529 |
+
max_input_tokens: int = 4000, max_output_tokens: int = 4000) -> Dict:
|
530 |
"""Analiza resultados de ajuste de modelos usando Qwen"""
|
531 |
|
532 |
# Preparar resumen completo de los datos
|
|
|
537 |
- Columns: {list(data.columns)}
|
538 |
- Number of models evaluated: {len(data)}
|
539 |
|
540 |
+
Complete data (first 5 rows):
|
541 |
+
{data.head().to_string()}
|
|
|
|
|
|
|
542 |
"""
|
543 |
|
|
|
|
|
|
|
544 |
# Obtener prefijo de idioma
|
545 |
lang_prefix = self.get_language_prompt_prefix(language)
|
546 |
|
|
|
703 |
# Análisis principal
|
704 |
response = self.client.chat.completions.create(
|
705 |
model=qwen_model,
|
706 |
+
max_tokens=min(max_output_tokens, 4000),
|
707 |
temperature=0.3,
|
708 |
messages=[{
|
709 |
"role": "user",
|
|
|
711 |
}]
|
712 |
)
|
713 |
|
714 |
+
# Registrar uso de tokens
|
715 |
+
if response.usage:
|
716 |
+
self.token_usage['input_tokens'] += response.usage.prompt_tokens
|
717 |
+
self.token_usage['output_tokens'] += response.usage.completion_tokens
|
718 |
+
self.token_usage['total_tokens'] += response.usage.total_tokens
|
719 |
+
self.token_usage['estimated_cost'] = self.calculate_cost(qwen_model, response.usage)
|
720 |
+
|
721 |
analysis_result = response.choices[0].message.content
|
722 |
|
723 |
# Generación de código
|
|
|
725 |
{lang_prefix}
|
726 |
|
727 |
Based on the analysis and this actual data:
|
728 |
+
{data.head().to_string()}
|
729 |
|
730 |
Generate Python code that:
|
731 |
|
|
|
754 |
|
755 |
code_response = self.client.chat.completions.create(
|
756 |
model=qwen_model,
|
757 |
+
max_tokens=min(max_output_tokens, 3000),
|
758 |
temperature=0.1,
|
759 |
messages=[{
|
760 |
"role": "user",
|
|
|
762 |
}]
|
763 |
)
|
764 |
|
765 |
+
# Registrar uso de tokens
|
766 |
+
if code_response.usage:
|
767 |
+
self.token_usage['input_tokens'] += code_response.usage.prompt_tokens
|
768 |
+
self.token_usage['output_tokens'] += code_response.usage.completion_tokens
|
769 |
+
self.token_usage['total_tokens'] += code_response.usage.total_tokens
|
770 |
+
self.token_usage['estimated_cost'] += self.calculate_cost(qwen_model, code_response.usage)
|
771 |
+
|
772 |
code_result = code_response.choices[0].message.content
|
773 |
|
774 |
return {
|
|
|
782 |
for metric in ['r2', 'rmse', 'aic', 'bic', 'mse'])],
|
783 |
"mejor_r2": data['R2'].max() if 'R2' in data.columns else None,
|
784 |
"mejor_modelo_r2": data.loc[data['R2'].idxmax()]['Model'] if 'R2' in data.columns and 'Model' in data.columns else None,
|
|
|
785 |
}
|
786 |
}
|
787 |
|
788 |
except Exception as e:
|
789 |
print(f"Error en análisis: {str(e)}")
|
790 |
return {"error": str(e)}
|
791 |
+
|
792 |
+
def calculate_cost(self, model_name: str, usage) -> float:
|
793 |
+
"""Calcula el costo estimado en dólares"""
|
794 |
+
if model_name not in QWEN_MODELS:
|
795 |
+
return 0.0
|
796 |
+
|
797 |
+
model_info = QWEN_MODELS[model_name]
|
798 |
+
input_cost = model_info.get('input_cost', 0.0)
|
799 |
+
output_cost = model_info.get('output_cost', 0.0)
|
800 |
+
|
801 |
+
return (usage.prompt_tokens * input_cost) + (usage.completion_tokens * output_cost)
|
802 |
|
803 |
def process_files(files, qwen_model: str, detail_level: str = "detailed",
|
804 |
+
language: str = "en", additional_specs: str = "",
|
805 |
+
max_input_tokens: int = 4000, max_output_tokens: int = 4000) -> Tuple[str, str, str, Dict]:
|
806 |
"""Procesa múltiples archivos usando Qwen"""
|
807 |
processor = FileProcessor()
|
808 |
analyzer = AIAnalyzer(client, model_registry)
|
809 |
+
analyzer.reset_token_usage()
|
810 |
+
|
811 |
results = []
|
812 |
all_code = []
|
813 |
+
thinking_process = []
|
814 |
|
815 |
for file in files:
|
816 |
if file is None:
|
|
|
825 |
if file_ext in ['.csv', '.xlsx', '.xls']:
|
826 |
if language == 'es':
|
827 |
results.append(f"## 📊 Análisis de Resultados: {file_name}")
|
828 |
+
thinking_process.append(f"### 🔍 Procesando archivo: {file_name}")
|
829 |
else:
|
830 |
results.append(f"## 📊 Results Analysis: {file_name}")
|
831 |
+
thinking_process.append(f"### 🔍 Processing file: {file_name}")
|
832 |
|
833 |
if file_ext == '.csv':
|
834 |
df = processor.read_csv(file_content)
|
835 |
+
thinking_process.append("✅ Archivo CSV leído correctamente" if language == 'es' else "✅ CSV file read successfully")
|
836 |
else:
|
837 |
df = processor.read_excel(file_content)
|
838 |
+
thinking_process.append("✅ Archivo Excel leído correctamente" if language == 'es' else "✅ Excel file read successfully")
|
839 |
|
840 |
if df is not None:
|
841 |
+
analysis_type = analyzer.detect_analysis_type(df, max_input_tokens)
|
842 |
+
thinking_process.append(f"🔎 Tipo de análisis detectado: {analysis_type.value}" if language == 'es' else f"🔎 Analysis type detected: {analysis_type.value}")
|
843 |
|
844 |
if analysis_type == AnalysisType.FITTING_RESULTS:
|
845 |
result = analyzer.analyze_fitting_results(
|
846 |
+
df, qwen_model, detail_level, language, additional_specs,
|
847 |
+
max_input_tokens, max_output_tokens
|
848 |
)
|
849 |
|
850 |
if language == 'es':
|
|
|
857 |
all_code.append(result["codigo_implementacion"])
|
858 |
|
859 |
results.append("\n---\n")
|
860 |
+
thinking_process.append("\n---\n")
|
861 |
|
862 |
analysis_text = "\n".join(results)
|
863 |
code_text = "\n\n# " + "="*50 + "\n\n".join(all_code) if all_code else generate_implementation_code(analysis_text)
|
864 |
+
thinking_text = "\n".join(thinking_process)
|
865 |
|
866 |
+
# Agregar información de tokens al proceso de pensamiento
|
867 |
+
token_info = analyzer.token_usage
|
868 |
+
if language == 'es':
|
869 |
+
thinking_text += f"""
|
870 |
+
|
871 |
+
### 💰 USO DE TOKENS
|
872 |
+
- Tokens de entrada usados: {token_info['input_tokens']}
|
873 |
+
- Tokens de salida usados: {token_info['output_tokens']}
|
874 |
+
- Total de tokens: {token_info['total_tokens']}
|
875 |
+
- Costo estimado: ${token_info['estimated_cost']:.6f}
|
876 |
+
"""
|
877 |
+
else:
|
878 |
+
thinking_text += f"""
|
879 |
+
|
880 |
+
### 💰 TOKEN USAGE
|
881 |
+
- Input tokens used: {token_info['input_tokens']}
|
882 |
+
- Output tokens used: {token_info['output_tokens']}
|
883 |
+
- Total tokens: {token_info['total_tokens']}
|
884 |
+
- Estimated cost: ${token_info['estimated_cost']:.6f}
|
885 |
+
"""
|
886 |
+
|
887 |
+
return thinking_text, analysis_text, code_text, token_info
|
888 |
|
889 |
def generate_implementation_code(analysis_results: str) -> str:
|
890 |
"""Genera código de implementación con análisis por experimento"""
|
891 |
+
# (El código de implementación se mantiene igual que en la versión anterior)
|
892 |
+
return ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
893 |
|
894 |
# Estado global para almacenar resultados
|
895 |
class AppState:
|
896 |
def __init__(self):
|
897 |
+
self.current_thinking = ""
|
898 |
self.current_analysis = ""
|
899 |
self.current_code = ""
|
900 |
self.current_language = "en"
|
901 |
+
self.token_usage = {}
|
902 |
|
903 |
app_state = AppState()
|
904 |
|
905 |
def export_report(export_format: str, language: str) -> Tuple[str, str]:
|
906 |
"""Exporta el reporte al formato seleccionado"""
|
907 |
if not app_state.current_analysis:
|
908 |
+
error_msg = TRANSLATIONS[language]['error_no_files']
|
909 |
+
return error_msg, ""
|
|
|
|
|
|
|
|
|
|
|
|
|
910 |
|
911 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
912 |
|
|
|
943 |
gr.update(label=t['select_theme']), # theme_selector
|
944 |
gr.update(label=t['detail_level']), # detail_level
|
945 |
gr.update(label=t['additional_specs'], placeholder=t['additional_specs_placeholder']), # additional_specs
|
946 |
+
gr.update(label=t['input_tokens']), # input_tokens_slider
|
947 |
+
gr.update(label=t['output_tokens']), # output_tokens_slider
|
948 |
gr.update(value=t['analyze_button']), # analyze_btn
|
949 |
gr.update(label=t['export_format']), # export_format
|
950 |
gr.update(value=t['export_button']), # export_btn
|
951 |
+
gr.update(label=t['thinking_process']), # thinking_output
|
952 |
+
gr.update(label=t['analysis_report']), # analysis_output
|
953 |
+
gr.update(label=t['code_output']), # code_output
|
954 |
+
gr.update(label=t['token_usage']), # token_usage_output
|
955 |
gr.update(label=t['data_format']) # data_format_accordion
|
956 |
]
|
957 |
|
958 |
+
def process_and_store(files, model, detail, language, additional_specs, input_tokens, output_tokens):
|
959 |
"""Procesa archivos y almacena resultados"""
|
960 |
if not files:
|
961 |
error_msg = TRANSLATIONS[language]['error_no_files']
|
962 |
+
return error_msg, "", "", {"input_tokens": 0, "output_tokens": 0, "total_tokens": 0, "estimated_cost": 0.0}
|
963 |
|
964 |
+
thinking, analysis, code, token_usage = process_files(
|
965 |
+
files, model, detail, language, additional_specs,
|
966 |
+
input_tokens, output_tokens
|
967 |
+
)
|
968 |
+
|
969 |
+
app_state.current_thinking = thinking
|
970 |
app_state.current_analysis = analysis
|
971 |
app_state.current_code = code
|
972 |
+
app_state.token_usage = token_usage
|
973 |
+
|
974 |
+
# Formatear información de tokens
|
975 |
+
t = TRANSLATIONS[language]
|
976 |
+
token_info = f"""
|
977 |
+
### {t['token_info']}
|
978 |
+
- **{t['input_token_count']}:** {token_usage['input_tokens']}
|
979 |
+
- **{t['output_token_count']}:** {token_usage['output_tokens']}
|
980 |
+
- **{t['total_token_count']}:** {token_usage['total_tokens']}
|
981 |
+
- **{t['token_cost']}:** ${token_usage['estimated_cost']:.6f}
|
982 |
+
"""
|
983 |
+
|
984 |
+
return thinking, analysis, code, token_info
|
985 |
|
986 |
+
with gr.Blocks(theme=THEMES[current_theme], title="Biotech Model Analyzer") as demo:
|
987 |
# Componentes de UI
|
988 |
with gr.Row():
|
989 |
with gr.Column(scale=3):
|
|
|
992 |
with gr.Column(scale=1):
|
993 |
with gr.Row():
|
994 |
language_selector = gr.Dropdown(
|
995 |
+
choices=[("English", "en"), ("Español", "es")],
|
|
|
996 |
value="en",
|
997 |
label=TRANSLATIONS[current_language]['select_language'],
|
998 |
interactive=True
|
|
|
1029 |
label=TRANSLATIONS[current_language]['detail_level']
|
1030 |
)
|
1031 |
|
|
|
1032 |
additional_specs = gr.Textbox(
|
1033 |
label=TRANSLATIONS[current_language]['additional_specs'],
|
1034 |
placeholder=TRANSLATIONS[current_language]['additional_specs_placeholder'],
|
|
|
1037 |
interactive=True
|
1038 |
)
|
1039 |
|
1040 |
+
# Nuevos sliders para tokens
|
1041 |
+
input_tokens_slider = gr.Slider(
|
1042 |
+
minimum=1000,
|
1043 |
+
maximum=1000000,
|
1044 |
+
value=4000,
|
1045 |
+
step=1000,
|
1046 |
+
label=TRANSLATIONS[current_language]['input_tokens'],
|
1047 |
+
info="Máximo tokens para entrada (0-1 millón)"
|
1048 |
+
)
|
1049 |
+
|
1050 |
+
output_tokens_slider = gr.Slider(
|
1051 |
+
minimum=1000,
|
1052 |
+
maximum=1000000,
|
1053 |
+
value=4000,
|
1054 |
+
step=1000,
|
1055 |
+
label=TRANSLATIONS[current_language]['output_tokens'],
|
1056 |
+
info="Máximo tokens para salida (0-1 millón)"
|
1057 |
+
)
|
1058 |
+
|
1059 |
analyze_btn = gr.Button(
|
1060 |
TRANSLATIONS[current_language]['analyze_button'],
|
1061 |
variant="primary",
|
|
|
1087 |
)
|
1088 |
|
1089 |
with gr.Column(scale=2):
|
1090 |
+
# Nuevos outputs separados
|
1091 |
+
thinking_output = gr.Markdown(
|
1092 |
+
label=TRANSLATIONS[current_language]['thinking_process']
|
1093 |
+
)
|
1094 |
+
|
1095 |
analysis_output = gr.Markdown(
|
1096 |
+
label=TRANSLATIONS[current_language]['analysis_report']
|
1097 |
)
|
1098 |
|
1099 |
code_output = gr.Code(
|
1100 |
+
label=TRANSLATIONS[current_language]['code_output'],
|
1101 |
language="python",
|
1102 |
interactive=True,
|
1103 |
+
lines=15
|
1104 |
+
)
|
1105 |
+
|
1106 |
+
token_usage_output = gr.Markdown(
|
1107 |
+
label=TRANSLATIONS[current_language]['token_usage']
|
1108 |
)
|
1109 |
|
1110 |
data_format_accordion = gr.Accordion(
|
|
|
1131 |
- **Parameters**: Model-specific parameters
|
1132 |
""")
|
1133 |
|
1134 |
+
# Eventos
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1135 |
language_selector.change(
|
1136 |
update_interface_language,
|
1137 |
inputs=[language_selector],
|
1138 |
outputs=[
|
1139 |
title_text, subtitle_text, files_input, model_selector,
|
1140 |
language_selector, theme_selector, detail_level, additional_specs,
|
1141 |
+
input_tokens_slider, output_tokens_slider, analyze_btn, export_format,
|
1142 |
+
export_btn, thinking_output, analysis_output, code_output,
|
1143 |
+
token_usage_output, data_format_accordion
|
1144 |
]
|
1145 |
)
|
1146 |
|
1147 |
def change_theme(theme_name):
|
1148 |
"""Cambia el tema de la interfaz"""
|
|
|
|
|
1149 |
return gr.Info("Theme will be applied on next page load")
|
1150 |
|
1151 |
theme_selector.change(
|
|
|
1156 |
|
1157 |
analyze_btn.click(
|
1158 |
fn=process_and_store,
|
1159 |
+
inputs=[files_input, model_selector, detail_level, language_selector,
|
1160 |
+
additional_specs, input_tokens_slider, output_tokens_slider],
|
1161 |
+
outputs=[thinking_output, analysis_output, code_output, token_usage_output]
|
1162 |
)
|
1163 |
|
1164 |
def handle_export(format, language):
|