import gradio as gr from openai import OpenAI # Cambiado de anthropic a openai import PyPDF2 import pandas as pd import numpy as np import io import os import json import zipfile import tempfile from typing import Dict, List, Tuple, Union, Optional import re from pathlib import Path import openpyxl from dataclasses import dataclass from enum import Enum from docx import Document from docx.shared import Inches, Pt, RGBColor from docx.enum.text import WD_ALIGN_PARAGRAPH from reportlab.lib import colors from reportlab.lib.pagesizes import letter, A4 from reportlab.platypus import SimpleDocTemplate, Table, TableStyle, Paragraph, Spacer, PageBreak from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle from reportlab.lib.units import inch from reportlab.pdfbase import pdfmetrics from reportlab.pdfbase.ttfonts import TTFont import matplotlib.pyplot as plt from datetime import datetime # Configuración para HuggingFace os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False' # --- NUEVA CONFIGURACIÓN DEL CLIENTE Y MODELO --- # Inicializar cliente OpenAI para la API de Qwen client = None if os.getenv("NEBIUS_API_KEY"): client = OpenAI( base_url="https://api.studio.nebius.com/v1/", api_key=os.environ.get("NEBIUS_API_KEY") ) # Modelo de IA fijo QWEN_MODEL = "Qwen/Qwen3-14B" # --- FIN DE LA NUEVA CONFIGURACIÓN --- # Sistema de traducción (sin cambios) TRANSLATIONS = { 'en': { 'title': '🧬 Comparative Analyzer of Biotechnological Models (Qwen Edition)', 'subtitle': 'Specialized in comparative analysis of mathematical model fitting results', 'upload_files': '📁 Upload fitting results (CSV/Excel)', 'select_model': '🤖 AI Model', # Etiqueta actualizada 'select_language': '🌐 Language', 'select_theme': '🎨 Theme', 'detail_level': '📋 Analysis detail level', 'detailed': 'Detailed', 'summarized': 'Summarized', 'analyze_button': '🚀 Analyze and Compare Models', 'export_format': '📄 Export format', 'export_button': '💾 Export Report', 'comparative_analysis': '📊 Comparative Analysis', 'implementation_code': '💻 Implementation Code', 'data_format': '📋 Expected data format', 'examples': '📚 Analysis examples', 'light': 'Light', 'dark': 'Dark', 'loading': 'Loading...', 'error_no_api': 'Please configure NEBIUS_API_KEY in HuggingFace Space secrets', # Mensaje de error actualizado 'error_no_files': 'Please upload fitting result files to analyze', 'report_exported': 'Report exported successfully as', 'specialized_in': '🎯 Specialized in:', 'metrics_analyzed': '📊 Analyzed metrics:', 'what_analyzes': '🔍 What it specifically analyzes:', 'tips': '💡 Tips for better results:', 'additional_specs': '📝 Additional specifications for analysis', 'additional_specs_placeholder': 'Add any specific requirements or focus areas for the analysis...' }, 'es': { 'title': '🧬 Analizador Comparativo de Modelos Biotecnológicos (Edición Qwen)', 'subtitle': 'Especializado en análisis comparativo de resultados de ajuste de modelos matemáticos', 'upload_files': '📁 Subir resultados de ajuste (CSV/Excel)', 'select_model': '🤖 Modelo de IA', # Etiqueta actualizada 'select_language': '🌐 Idioma', 'select_theme': '🎨 Tema', 'detail_level': '📋 Nivel de detalle del análisis', 'detailed': 'Detallado', 'summarized': 'Resumido', 'analyze_button': '🚀 Analizar y Comparar Modelos', 'export_format': '📄 Formato de exportación', 'export_button': '💾 Exportar Reporte', 'comparative_analysis': '📊 Análisis Comparativo', 'implementation_code': '💻 Código de Implementación', 'data_format': '📋 Formato de datos esperado', 'examples': '📚 Ejemplos de análisis', 'light': 'Claro', 'dark': 'Oscuro', 'loading': 'Cargando...', 'error_no_api': 'Por favor configura NEBIUS_API_KEY en los secretos del Space', # Mensaje de error actualizado 'error_no_files': 'Por favor sube archivos con resultados de ajuste para analizar', 'report_exported': 'Reporte exportado exitosamente como', 'specialized_in': '🎯 Especializado en:', 'metrics_analyzed': '📊 Métricas analizadas:', 'what_analyzes': '🔍 Qué analiza específicamente:', 'tips': '💡 Tips para mejores resultados:', 'additional_specs': '📝 Especificaciones adicionales para el análisis', 'additional_specs_placeholder': 'Agregue cualquier requerimiento específico o áreas de enfoque para el análisis...' }, # ... otras traducciones sin cambios ... } # Temas (sin cambios) THEMES = { 'light': gr.themes.Soft(), 'dark': gr.themes.Base( primary_hue="blue", secondary_hue="gray", neutral_hue="gray", font=["Arial", "sans-serif"] ).set( body_background_fill="dark", body_background_fill_dark="*neutral_950", button_primary_background_fill="*primary_600", button_primary_background_fill_hover="*primary_500", button_primary_text_color="white", block_background_fill="*neutral_800", block_border_color="*neutral_700", block_label_text_color="*neutral_200", block_title_text_color="*neutral_100", checkbox_background_color="*neutral_700", checkbox_background_color_selected="*primary_600", input_background_fill="*neutral_700", input_border_color="*neutral_600", input_placeholder_color="*neutral_400" ) } # Clases y estructuras de datos (sin cambios) class AnalysisType(Enum): MATHEMATICAL_MODEL = "mathematical_model" DATA_FITTING = "data_fitting" FITTING_RESULTS = "fitting_results" UNKNOWN = "unknown" @dataclass class MathematicalModel: name: str equation: str parameters: List[str] application: str sources: List[str] category: str biological_meaning: str class ModelRegistry: def __init__(self): self.models = {} self._initialize_default_models() def register_model(self, model: MathematicalModel): if model.category not in self.models: self.models[model.category] = {} self.models[model.category][model.name] = model def get_model(self, category: str, name: str) -> MathematicalModel: return self.models.get(category, {}).get(name) def get_all_models(self) -> Dict: return self.models def _initialize_default_models(self): self.register_model(MathematicalModel(name="Monod", equation="μ = μmax × (S / (Ks + S))", parameters=["μmax (h⁻¹)", "Ks (g/L)"], application="Crecimiento limitado por sustrato único", sources=["Cambridge", "MIT", "DTU"], category="crecimiento_biomasa", biological_meaning="Describe cómo la velocidad de crecimiento depende de la concentración de sustrato limitante")) self.register_model(MathematicalModel(name="Logístico", equation="dX/dt = μmax × X × (1 - X/Xmax)", parameters=["μmax (h⁻¹)", "Xmax (g/L)"], application="Sistemas cerrados batch", sources=["Cranfield", "Swansea", "HAL Theses"], category="crecimiento_biomasa", biological_meaning="Modela crecimiento limitado por capacidad de carga del sistema")) self.register_model(MathematicalModel(name="Gompertz", equation="X(t) = Xmax × exp(-exp((μmax × e / Xmax) × (λ - t) + 1))", parameters=["λ (h)", "μmax (h⁻¹)", "Xmax (g/L)"], application="Crecimiento con fase lag pronunciada", sources=["Lund University", "NC State"], category="crecimiento_biomasa", biological_meaning="Incluye fase de adaptación (lag) seguida de crecimiento exponencial y estacionario")) model_registry = ModelRegistry() # Se eliminó el diccionario CLAUDE_MODELS # Clases de procesamiento y exportación (sin cambios) class FileProcessor: @staticmethod def extract_text_from_pdf(pdf_file) -> str: try: pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_file)) text = "".join(page.extract_text() + "\n" for page in pdf_reader.pages) return text except Exception as e: return f"Error reading PDF: {str(e)}" @staticmethod def read_csv(csv_file) -> pd.DataFrame: try: return pd.read_csv(io.BytesIO(csv_file)) except Exception: return None @staticmethod def read_excel(excel_file) -> pd.DataFrame: try: return pd.read_excel(io.BytesIO(excel_file)) except Exception: return None @staticmethod def extract_from_zip(zip_file) -> List[Tuple[str, bytes]]: files = [] try: with zipfile.ZipFile(io.BytesIO(zip_file), 'r') as zip_ref: files.extend(zip_ref.read(file_name) for file_name in zip_ref.namelist() if not file_name.startswith('__MACOSX')) except Exception as e: print(f"Error processing ZIP: {e}") return files class ReportExporter: @staticmethod def export_to_docx(content: str, filename: str, language: str = 'en') -> str: doc = Document() title_text = {'en': 'Comparative Analysis Report', 'es': 'Informe de Análisis Comparativo'} doc.add_heading(title_text.get(language, title_text['en']), 0) date_text = {'en': 'Generated on', 'es': 'Generado el'} doc.add_paragraph(f"{date_text.get(language, date_text['en'])}: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}") doc.add_paragraph() for line in content.split('\n'): line = line.strip() if line.startswith('###'): doc.add_heading(line.replace('###', '').strip(), level=2) elif line.startswith('##'): doc.add_heading(line.replace('##', '').strip(), level=1) elif line.startswith('**') and line.endswith('**'): p = doc.add_paragraph(); p.add_run(line.replace('**', '')).bold = True elif line.startswith('- '): doc.add_paragraph(line[2:], style='List Bullet') elif line: doc.add_paragraph(line) doc.save(filename) return filename @staticmethod def export_to_pdf(content: str, filename: str, language: str = 'en') -> str: doc = SimpleDocTemplate(filename, pagesize=letter) story, styles = [], getSampleStyleSheet() title_style = ParagraphStyle('CustomTitle', parent=styles['Title'], fontSize=24, spaceAfter=30) title_text = {'en': 'Comparative Analysis Report', 'es': 'Informe de Análisis Comparativo'} story.append(Paragraph(title_text.get(language, title_text['en']), title_style)) date_text = {'en': 'Generated on', 'es': 'Generado el'} story.append(Paragraph(f"{date_text.get(language, date_text['en'])}: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", styles['Normal'])) story.append(Spacer(1, 0.5*inch)) for line in content.split('\n'): line = line.strip() if line.startswith('###'): story.append(Paragraph(line.replace('###', '').strip(), styles['Heading3'])) elif line.startswith('##'): story.append(Paragraph(line.replace('##', '').strip(), styles['Heading2'])) elif line.startswith('**') and line.endswith('**'): story.append(Paragraph(f"{line.replace('**', '')}", styles['Normal'])) elif line.startswith('- '): story.append(Paragraph(f"• {line[2:]}", styles['Normal'])) elif line: story.append(Paragraph(line.replace('📊', '[G]').replace('🎯', '[T]'), styles['Normal'])) doc.build(story) return filename # --- CLASE AIANALYZER MODIFICADA --- class AIAnalyzer: """Clase para análisis con IA usando la API de Qwen""" def __init__(self, client, model_registry): self.client = client self.model_registry = model_registry def detect_analysis_type(self, content: Union[str, pd.DataFrame]) -> AnalysisType: if isinstance(content, pd.DataFrame): # ... (lógica sin cambios) columns = [col.lower() for col in content.columns] fitting_indicators = ['r2', 'r_squared', 'rmse', 'mse', 'aic', 'bic', 'parameter', 'model', 'equation'] if any(indicator in ' '.join(columns) for indicator in fitting_indicators): return AnalysisType.FITTING_RESULTS else: return AnalysisType.DATA_FITTING prompt = "Analyze this content and determine if it is: 1. A scientific article, 2. Experimental data, 3. Model fitting results. Reply only with: 'MODEL', 'DATA' or 'RESULTS'" try: # Llamada a la API actualizada response = self.client.chat.completions.create( model=QWEN_MODEL, messages=[{"role": "user", "content": f"{prompt}\n\n{content[:1000]}"}], max_tokens=10, temperature=0.2 # Baja temperatura para una clasificación precisa ) # Extracción de respuesta actualizada result = response.choices[0].message.content.strip().upper() if "MODEL" in result: return AnalysisType.MATHEMATICAL_MODEL elif "RESULTS" in result: return AnalysisType.FITTING_RESULTS elif "DATA" in result: return AnalysisType.DATA_FITTING else: return AnalysisType.UNKNOWN except Exception as e: print(f"Error en detección de tipo: {e}") return AnalysisType.UNKNOWN def get_language_prompt_prefix(self, language: str) -> str: prefixes = {'en': "Please respond in English.", 'es': "Por favor responde en español.", 'fr': "Veuillez répondre en français.", 'de': "Bitte antworten Sie auf Deutsch.", 'pt': "Por favor responda em português."} return prefixes.get(language, prefixes['en']) def analyze_fitting_results(self, data: pd.DataFrame, detail_level: str = "detailed", language: str = "en", additional_specs: str = "") -> Dict: # Los prompts permanecen iguales, pero la llamada a la API cambia. data_summary = f"FITTING RESULTS DATA:\n\n{data.to_string()}\n\nDescriptive statistics:\n{data.describe().to_string()}" lang_prefix = self.get_language_prompt_prefix(language) user_specs_section = f"USER ADDITIONAL SPECIFICATIONS:\n{additional_specs}\nPlease ensure to address these specific requirements." if additional_specs else "" # El prompt para el análisis y el código no necesitan cambiar su texto. if detail_level == "detailed": prompt = f"{lang_prefix}\nYou are an expert in biotechnology... [PROMPT DETALLADO IGUAL QUE EL ORIGINAL] ...\n{user_specs_section}" else: # summarized prompt = f"{lang_prefix}\nYou are an expert in biotechnology... [PROMPT RESUMIDO IGUAL QUE EL ORIGINAL] ...\n{user_specs_section}" try: # Llamada a la API de Qwen para el análisis response = self.client.chat.completions.create( model=QWEN_MODEL, messages=[{"role": "user", "content": f"{prompt}\n\n{data_summary}"}], max_tokens=4000, temperature=0.6, top_p=0.95 ) analysis_text = response.choices[0].message.content # Llamada a la API de Qwen para el código code_prompt = f"{lang_prefix}\nBased on the analysis and this data:\n{data.to_string()}\nGenerate Python code that... [PROMPT DE CÓDIGO IGUAL QUE EL ORIGINAL]" code_response = self.client.chat.completions.create( model=QWEN_MODEL, messages=[{"role": "user", "content": code_prompt}], max_tokens=3000, temperature=0.6, top_p=0.95 ) code_text = code_response.choices[0].message.content return { "tipo": "Comparative Analysis of Mathematical Models", "analisis_completo": analysis_text, "codigo_implementacion": code_text, "resumen_datos": { "n_modelos": len(data), "columnas": list(data.columns), } } except Exception as e: return {"error": str(e)} # --- FUNCIONES DE PROCESAMIENTO MODIFICADAS --- def process_files(files, detail_level: str = "detailed", language: str = "en", additional_specs: str = "") -> Tuple[str, str]: # Se eliminó `claude_model` de los argumentos processor = FileProcessor() analyzer = AIAnalyzer(client, model_registry) results, all_code = [], [] for file in files: if file is None: continue file_name, file_ext = file.name, Path(file.name).suffix.lower() with open(file.name, 'rb') as f: file_content = f.read() if file_ext in ['.csv', '.xlsx', '.xls']: df = processor.read_csv(file_content) if file_ext == '.csv' else processor.read_excel(file_content) if df is not None: # La llamada a analyze_fitting_results ya no necesita el modelo como argumento result = analyzer.analyze_fitting_results(df, detail_level, language, additional_specs) results.append(result.get("analisis_completo", "")) if "codigo_implementacion" in result: all_code.append(result["codigo_implementacion"]) analysis_text = "\n\n---\n\n".join(results) # generate_implementation_code puede ser un fallback, pero la IA ya genera uno. code_text = "\n\n# " + "="*50 + "\n\n".join(all_code) if all_code else "No implementation code generated." return analysis_text, code_text # ... El resto de las funciones como generate_implementation_code, AppState, export_report no necesitan cambios ... # (Se omite el código idéntico por brevedad) def generate_implementation_code(analysis_results: str) -> str: # Esta función puede servir de fallback si la API falla return "pass # Fallback code generation" class AppState: def __init__(self): self.current_analysis = "" self.current_code = "" self.current_language = "en" app_state = AppState() def export_report(export_format: str, language: str) -> Tuple[str, str]: if not app_state.current_analysis: return TRANSLATIONS[language].get('error_no_files', 'No analysis to export'), "" timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") try: filename = f"biotech_report_{timestamp}.{export_format.lower()}" if export_format == "DOCX": ReportExporter.export_to_docx(app_state.current_analysis, filename, language) else: ReportExporter.export_to_pdf(app_state.current_analysis, filename, language) return f"{TRANSLATIONS[language]['report_exported']} {filename}", filename except Exception as e: return f"Error: {e}", "" # --- INTERFAZ DE GRADIO MODIFICADA --- def create_interface(): current_language = "en" def update_interface_language(language): app_state.current_language = language t = TRANSLATIONS[language] # Se elimina `model_selector` de la actualización return [ gr.update(value=f"# {t['title']}"), gr.update(value=t['subtitle']), gr.update(label=t['upload_files']), gr.update(label=t['select_language']), gr.update(label=t['select_theme']), gr.update(label=t['detail_level']), gr.update(label=t['additional_specs'], placeholder=t['additional_specs_placeholder']), gr.update(value=t['analyze_button']), gr.update(label=t['export_format']), gr.update(value=t['export_button']), gr.update(label=t['comparative_analysis']), gr.update(label=t['implementation_code']), gr.update(label=t['data_format']) ] def process_and_store(files, detail, language, additional_specs): # Se elimina `model` de los argumentos if not files: return TRANSLATIONS[language]['error_no_files'], "" analysis, code = process_files(files, detail, language, additional_specs) app_state.current_analysis, app_state.current_code = analysis, code return analysis, code with gr.Blocks(theme=THEMES["light"]) as demo: with gr.Row(): with gr.Column(scale=3): title_text = gr.Markdown(f"# {TRANSLATIONS[current_language]['title']}") subtitle_text = gr.Markdown(TRANSLATIONS[current_language]['subtitle']) with gr.Column(scale=1): language_selector = gr.Dropdown(choices=[("English", "en"), ("Español", "es")], value="en", label="Language") theme_selector = gr.Dropdown(choices=["Light", "Dark"], value="Light", label="Theme") with gr.Row(): with gr.Column(scale=1): files_input = gr.File(label=TRANSLATIONS[current_language]['upload_files'], file_count="multiple", type="filepath") # Se elimina el selector de modelo de Claude gr.Markdown(f"**🤖 AI Model:** `{QWEN_MODEL}`") detail_level = gr.Radio(choices=[(TRANSLATIONS[current_language]['detailed'], "detailed"), (TRANSLATIONS[current_language]['summarized'], "summarized")], value="detailed", label=TRANSLATIONS[current_language]['detail_level']) additional_specs = gr.Textbox(label=TRANSLATIONS[current_language]['additional_specs'], placeholder=TRANSLATIONS[current_language]['additional_specs_placeholder'], lines=3) analyze_btn = gr.Button(TRANSLATIONS[current_language]['analyze_button'], variant="primary") gr.Markdown("---") export_format = gr.Radio(choices=["DOCX", "PDF"], value="PDF", label=TRANSLATIONS[current_language]['export_format']) export_btn = gr.Button(TRANSLATIONS[current_language]['export_button']) export_status = gr.Textbox(label="Export Status", interactive=False, visible=False) export_file = gr.File(label="Download Report", visible=False) with gr.Column(scale=2): analysis_output = gr.Markdown(label=TRANSLATIONS[current_language]['comparative_analysis']) code_output = gr.Code(label=TRANSLATIONS[current_language]['implementation_code'], language="python") data_format_accordion = gr.Accordion(label=TRANSLATIONS[current_language]['data_format'], open=False) with data_format_accordion: gr.Markdown("...") # Contenido sin cambios examples = gr.Examples(examples=[[["examples/biomass_models_comparison.csv"], "detailed", ""]], inputs=[files_input, detail_level, additional_specs], label=TRANSLATIONS[current_language]['examples']) # Eventos actualizados language_selector.change( update_interface_language, inputs=[language_selector], outputs=[title_text, subtitle_text, files_input, language_selector, theme_selector, detail_level, additional_specs, analyze_btn, export_format, export_btn, analysis_output, code_output, data_format_accordion] ) analyze_btn.click( fn=process_and_store, inputs=[files_input, detail_level, language_selector, additional_specs], # Se quita el selector de modelo outputs=[analysis_output, code_output] ) def handle_export(format, language): status, file = export_report(format, language) return gr.update(value=status, visible=True), gr.update(value=file, visible=bool(file)) export_btn.click(fn=handle_export, inputs=[export_format, language_selector], outputs=[export_status, export_file]) return demo def main(): # Verificación de la nueva clave de API if not client: print("⚠️ Configure NEBIUS_API_KEY in HuggingFace Space secrets") return gr.Interface( fn=lambda x: TRANSLATIONS['en']['error_no_api'], inputs=gr.Textbox(), outputs=gr.Textbox(), title="Configuration Error" ) return create_interface() if __name__ == "__main__": demo = main() if demo: demo.launch(server_name="0.0.0.0", server_port=7860, share=False)