File size: 22,263 Bytes
400a879
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
import os
import torch
import torch.distributed as dist
from torch.utils.data import DistributedSampler
from safetensors.torch import load_file
import random
import glob
import numpy as np
from torchvision.transforms.functional import resize
from torchvision.transforms import InterpolationMode
from torchvision.utils import save_image


def init_distributed(args):
    """初始化分布式训练环境"""
    if not dist.is_initialized():
        dist.init_process_group(backend="nccl")
    global_rank = dist.get_rank()
    world_size = dist.get_world_size()
    local_rank = int(os.environ["LOCAL_RANK"])
    torch.cuda.set_device(local_rank)

    sp_size = 1
    dp_size = world_size

    if args.use_usp:
        sp_size = args.ulysses_degree * args.ring_degree
        dp_size = world_size // sp_size
        assert sp_size <= world_size, f"sequence parallel size ({sp_size}) must be less than or equal to world size ({world_size})."
        assert world_size % sp_size == 0, f"world size ({world_size}) must be divisible by sequence parallel size ({sp_size})."
        
        from xfuser.core.distributed import initialize_model_parallel, init_distributed_environment, get_data_parallel_rank
        init_distributed_environment(rank=global_rank, world_size=world_size)
        initialize_model_parallel(
            data_parallel_degree=dp_size,
            sequence_parallel_degree=sp_size,
            ring_degree=args.ring_degree,
            ulysses_degree=args.ulysses_degree,
        )

        if dist.is_initialized():
            sp_group_id = get_data_parallel_rank()
            if global_rank == 0:
                base_seed = torch.randint(0, 1000000, (1,)).item()
            else:
                base_seed = 0
            base_seed = torch.tensor([base_seed], device="cuda")
            dist.broadcast(base_seed, src=0)
            base_seed = base_seed.item()
            seed = base_seed + sp_group_id
            torch.manual_seed(seed)

    return global_rank, world_size, local_rank, sp_size, dp_size


def custom_collate_fn(batch):
    """自定义数据整理函数,用于处理不同长度的视频"""
    keys = batch[0].keys()
    data = {}
    batch_video_length = min([item["video"].shape[1] for item in batch])
    for key in keys:
        if key=='video': # 截断视频长度
            data[key] = [item[key][:,:batch_video_length] for item in batch]
        elif key == 'audio_emb':
            data[key] = [item[key][:batch_video_length] for item in batch]
        elif key == 'audio_embed_speaker1':
            data[key] = [item[key][:batch_video_length] for item in batch]
        elif key == 'audio_embed_speaker2':
            data[key] = [item[key][:batch_video_length] for item in batch]
        else:
            data[key] = [item[key] for item in batch]
    return data


def get_distributed_sampler(dataset, args, global_rank, world_size, sp_size, dp_size):
    """获取分布式采样器"""
    if dp_size == 1:
        sampler = None
    else:
        if args.use_usp:
            from xfuser.core.distributed import get_data_parallel_rank
            dp_rank = get_data_parallel_rank()
        else:
            dp_rank = global_rank  # 避免调用 _DP 相关内容

        sampler = DistributedSampler(
            dataset,
            num_replicas=dp_size,
            rank=dp_rank,
            shuffle=False
        )

        if global_rank == 0:
            print(f"Using DistributedSampler: dp_size={dp_size}, dp_rank={dp_rank}")

    return sampler


def load_predefined_prompt_embeddings(base_dir="./multi_person/prompt_emb_concat", text_len=512):
    """
    加载三种预定义的prompt embeddings
    
    Args:
        base_dir: 预定义embedding的基础目录
        text_len: 文本长度,用于padding或截断
    
    Returns:
        dict: 包含三种类型embedding的字典
        {
            'talk_prompts': list of tensors,
            'silent_prompts_left': list of tensors, 
            'silent_prompts_right': list of tensors
        }
    """
    prompt_embeddings = {
        'talk_prompts': [],
        'silent_prompts_left': [],
        'silent_prompts_right': []
    }
    
    # 定义三个子目录
    subdirs = {
        'talk_prompts': 'talk_prompts',
        'silent_prompts_left': 'silent_prompts_left', 
        'silent_prompts_right': 'silent_prompts_right'
    }
    
    for key, subdir in subdirs.items():
        dir_path = os.path.join(base_dir, subdir)
        if not os.path.exists(dir_path):
            print(f"Warning: Directory {dir_path} does not exist")
            continue
            
        # 获取所有.safetensors文件
        pattern = os.path.join(dir_path, "*.safetensors")
        files = sorted(glob.glob(pattern))
        
        for file_path in files:
            try:
                # 加载embedding
                prompt_data = load_file(file_path)
                prompt_emb = prompt_data['context']
                
                # 处理长度
                if prompt_emb.shape[0] < text_len:
                    padding = torch.zeros(text_len - prompt_emb.shape[0], prompt_emb.shape[1])
                    prompt_emb = torch.cat([prompt_emb, padding], dim=0)
                else:
                    prompt_emb = prompt_emb[:text_len]
                
                prompt_embeddings[key].append(prompt_emb)
                
            except Exception as e:
                print(f"Error loading {file_path}: {e}")
                continue
    
    print(f"Loaded {len(prompt_embeddings['talk_prompts'])} talk prompts")
    print(f"Loaded {len(prompt_embeddings['silent_prompts_left'])} silent left prompts") 
    print(f"Loaded {len(prompt_embeddings['silent_prompts_right'])} silent right prompts")
    
    return prompt_embeddings


def get_random_prompt_embedding(prompt_embeddings, prompt_type=None, device=None, dtype=None):
    """
    从预定义的prompt embeddings中随机选择一个
    
    Args:
        prompt_embeddings: 由load_predefined_prompt_embeddings返回的字典
        prompt_type: 指定类型 ('talk_prompts', 'silent_prompts_left', 'silent_prompts_right')
                    如果为None,则随机选择类型
        device: 目标设备
        dtype: 目标数据类型
    
    Returns:
        torch.Tensor: 随机选择的prompt embedding
    """
    if prompt_type is None:
        # 随机选择类型
        available_types = [k for k, v in prompt_embeddings.items() if len(v) > 0]
        if not available_types:
            raise ValueError("No prompt embeddings available")
        prompt_type = random.choice(available_types)
    
    if prompt_type not in prompt_embeddings:
        raise ValueError(f"Unknown prompt type: {prompt_type}")
    
    if len(prompt_embeddings[prompt_type]) == 0:
        raise ValueError(f"No embeddings available for type: {prompt_type}")
    
    # 随机选择一个embedding
    selected_embedding = random.choice(prompt_embeddings[prompt_type])
    
    # 移动到指定设备和类型
    if device is not None:
        selected_embedding = selected_embedding.to(device)
    if dtype is not None:
        selected_embedding = selected_embedding.to(dtype)
    
    return selected_embedding


def create_silence_video(video_tensor, cycle_frames=3):
    """
    创建沉默视频:使用前N帧循环播放,支持倒序播放模式
    
    Args:
        video_tensor: [b, 3, F, H, W] 原始视频tensor
        cycle_frames: int, 循环播放的帧数,默认为2
        
    Returns:
        silence_video: [b, 3, F, H, W] 沉默视频tensor
        
    播放模式:
    - cycle_frames=2: 12121212... (原逻辑)
    - cycle_frames=3: 123123123...
    - cycle_frames=4: 1234543212345... (倒序模式)
    - cycle_frames=5: 1234543212345...
    """
    batch_size, channels, num_frames, height, width = video_tensor.shape
    
    # 确保cycle_frames不超过视频总帧数
    cycle_frames = min(cycle_frames, num_frames)
    
    # 获取前cycle_frames帧
    cycle_video = video_tensor[:, :, :cycle_frames, :, :]  # [b, 3, cycle_frames, H, W]
    
    if cycle_frames <= 2:
        # 对于1-2帧,使用简单的交替模式
        if cycle_frames == 1:
            # 单帧重复
            silence_video = cycle_video.repeat(1, 1, num_frames, 1, 1)
        else:
            # 双帧交替:12121212...
            frame_1 = cycle_video[:, :, 0:1, :, :]  # [b, 3, 1, H, W]
            frame_2 = cycle_video[:, :, 1:2, :, :]  # [b, 3, 1, H, W]
            
            repeat_times = (num_frames + 1) // 2
            frame_1_repeated = frame_1.repeat(1, 1, repeat_times, 1, 1)
            frame_2_repeated = frame_2.repeat(1, 1, repeat_times, 1, 1)
            
            silence_frames = torch.stack([frame_1_repeated, frame_2_repeated], dim=3)
            silence_frames = silence_frames.view(batch_size, channels, repeat_times * 2, height, width)
            silence_video = silence_frames[:, :, :num_frames, :, :]
    else:
        # 对于3帧以上,使用倒序模式:1234543212345...
        # 创建一个完整的循环周期:123...cycle_frames...321
        forward_frames = cycle_video  # [b, 3, cycle_frames, H, W]
        reverse_frames = torch.flip(cycle_video[:, :, 1:-1, :, :], dims=[2])  # [b, 3, cycle_frames-2, H, W]
        
        # 拼接一个完整周期:123...cycle_frames...321
        one_cycle = torch.cat([forward_frames, reverse_frames], dim=2)  # [b, 3, 2*cycle_frames-2, H, W]
        cycle_length = 2 * cycle_frames - 2
        
        # 计算需要多少个完整周期
        num_cycles = (num_frames + cycle_length - 1) // cycle_length
        
        # 重复完整周期
        repeated_cycles = one_cycle.repeat(1, 1, num_cycles, 1, 1)  # [b, 3, num_cycles*cycle_length, H, W]
        
        # 截断到所需帧数
        silence_video = repeated_cycles[:, :, :num_frames, :, :]  # [b, 3, F, H, W]
    
    return silence_video


def extract_square_faces_from_ref_images(face_parser, ref_images, video_paths, first_frame_faces, crop_size=224, device=None, torch_dtype=None, global_rank=0, current_global_step=0):
    """
    使用人脸解析器从参考图像中提取方形人脸,如果检测不到人脸则回退到dataset提供的crop人脸
    
    Args:
        face_parser: FaceInference实例
        ref_images: list of tensors, 每个tensor shape: [3, H, W]
        video_paths: list of str, 对应的视频路径
        first_frame_faces: tensor, dataset提供的crop人脸 [b, 3, face_H, face_W]
        crop_size: int, 裁剪后的人脸尺寸
        device: torch设备
        torch_dtype: torch数据类型
        global_rank: 全局rank,用于控制日志输出
        current_global_step: 当前训练步数
        
    Returns:
        list of tensors: 每个tensor shape: [3, crop_size, crop_size]
    """
    square_faces = []
    
    for i, (ref_image, video_path) in enumerate(zip(ref_images, video_paths)):
        try:
            # 将tensor转换为numpy数组用于人脸检测
            # ref_image shape: [3, H, W], 需要转换为 [H, W, 3]
            # 确保转换为float32类型,避免BFloat16问题
            ref_image_np = ref_image.permute(1, 2, 0).cpu().float().numpy()
            
            # 处理值域:如果值域是[-1,1],则转换到[0,1];如果已经是[0,1],则直接使用
            if ref_image_np.min() < 0:
                # 从[-1,1]转换到[0,1]
                ref_image_np = (ref_image_np + 1) / 2
            ref_image_np = np.clip(ref_image_np, 0, 1)
            
            # 转换为uint8格式
            ref_image_np = (ref_image_np * 255).astype(np.uint8)
            
            # # 添加调试信息
            # if global_rank == 0 and current_global_step % 100 == 0:
            #     print(f"[Face Parser] 原始ref_image值域: [{ref_image.min():.4f}, {ref_image.max():.4f}]")
            #     print(f"[Face Parser] 转换后numpy数组值域: [{ref_image_np.min()}, {ref_image_np.max()}]")
            #     print(f"[Face Parser] 转换后numpy数组形状: {ref_image_np.shape}")
            
            # 使用人脸解析器检测人脸
            face_result = face_parser.infer_from_array(ref_image_np, n=1)  # 只取最大的人脸
            
            if face_result and 'bboxes' in face_result and len(face_result['bboxes']) > 0:
                # 获取第一个(最大的)人脸的bbox
                bbox = face_result['bboxes'][0]  # [x, y, width, height]
                x, y, w, h = bbox
                
                # 从原图中裁剪人脸区域
                face_crop = ref_image_np[int(y):int(y+h), int(x):int(x+w)]
                
                # # 添加调试信息
                # if global_rank == 0 and current_global_step % 100 == 0:
                #     print(f"[Face Parser] 成功提取人脸 {i}: bbox=[{x:.1f}, {y:.1f}, {w:.1f}, {h:.1f}]")
                #     print(f"[Face Parser] 裁剪后的人脸形状: {face_crop.shape}")
                #     print(f"[Face Parser] 裁剪后的人脸值域: [{face_crop.min()}, {face_crop.max()}]")
                
                # 将numpy数组转换回tensor并调整尺寸
                face_tensor = torch.from_numpy(face_crop).permute(2, 0, 1).float() / 255.0
                face_tensor = resize(face_tensor, size=(crop_size, crop_size), interpolation=InterpolationMode.BILINEAR)
                
                # # 添加更多调试信息
                # if global_rank == 0 and current_global_step % 100 == 0:
                #     print(f"[Face Parser] 调整尺寸后的tensor形状: {face_tensor.shape}")
                #     print(f"[Face Parser] 调整尺寸后的tensor值域: [{face_tensor.min():.4f}, {face_tensor.max():.4f}]")
                
                square_faces.append(face_tensor.to(device, dtype=torch_dtype))
                    
            else:
                # 如果没有检测到人脸,回退到使用dataset提供的crop人脸
                dataset_face = first_frame_faces[i]  # [3, face_H, face_W]
                
                # 添加调试信息
                if global_rank == 0 :
                    print(f"[Face Parser] 未检测到人脸 {i},回退到dataset提供的crop人脸")
                    print(f"[Face Parser] Dataset人脸形状: {dataset_face.shape}")
                    print(f"[Face Parser] Dataset人脸值域: [{dataset_face.min():.4f}, {dataset_face.max():.4f}]")
                
                face_tensor = resize(dataset_face, size=(crop_size, crop_size), interpolation=InterpolationMode.BILINEAR)
                
                # 添加更多调试信息
                if global_rank == 0:
                    print(f"[Face Parser] 调整尺寸后的dataset人脸形状: {face_tensor.shape}")
                    print(f"[Face Parser] 调整尺寸后的dataset人脸值域: [{face_tensor.min():.4f}, {face_tensor.max():.4f}]")
                
                square_faces.append(face_tensor.to(device, dtype=torch_dtype))
                    
        except Exception as e:
            # 异常情况下回退到使用dataset提供的crop人脸
            dataset_face = first_frame_faces[i]  # [3, face_H, face_W]
            
            # 添加调试信息
            if global_rank == 0:
                print(f"[Face Parser] 处理图像 {i} 时出错: {str(e)},回退到dataset提供的crop人脸")
                print(f"[Face Parser] 异常回退 - Dataset人脸形状: {dataset_face.shape}")
                print(f"[Face Parser] 异常回退 - Dataset人脸值域: [{dataset_face.min():.4f}, {dataset_face.max():.4f}]")
            
            face_tensor = resize(dataset_face, size=(crop_size, crop_size), interpolation=InterpolationMode.BILINEAR)
            
            # 添加更多调试信息
            if global_rank == 0:
                print(f"[Face Parser] 异常回退 - 调整尺寸后的tensor形状: {face_tensor.shape}")
                print(f"[Face Parser] 异常回退 - 调整尺寸后的tensor值域: [{face_tensor.min():.4f}, {face_tensor.max():.4f}]")
            
            square_faces.append(face_tensor.to(device, dtype=torch_dtype))
    
    return square_faces


def save_face_parser_debug_images(ref_cropped_list, ref_image, video_paths, first_frame_faces, current_step, crop_image_size, debug_dir="./logs/debug/ref", global_rank=0):
    """
    保存人脸解析器的调试图像到debug目录
    
    Args:
        ref_cropped_list: list of tensors, 人脸解析器生成的方形人脸
        ref_image: tensor, 原始参考图像
        video_paths: list of str, 视频路径
        first_frame_faces: tensor, dataset提供的crop人脸
        current_step: int, 当前训练步数
        crop_image_size: int, 裁剪图像尺寸
        debug_dir: str, 调试目录路径
    """
    try:
        # 只在rank 0时创建debug目录
        if global_rank == 0:
            os.makedirs(debug_dir, exist_ok=True)
            os.chmod(debug_dir, 0o777)
        
        # 保存每个batch的调试图像
        for batch_idx, (ref_cropped, video_path) in enumerate(zip(ref_cropped_list, video_paths)):
            # 只在rank 0时创建子目录
            if global_rank == 0:
                batch_dir = os.path.join(debug_dir, f"step_{current_step}_batch_{batch_idx}")
                os.makedirs(batch_dir, exist_ok=True)
                os.chmod(batch_dir, 0o777)
            
            # 保存原始参考图像
            if ref_image is not None:
                ref_img_single = ref_image[batch_idx]  # [3, H, W]
                # 处理值域:如果值域是[-1,1],则转换到[0,1];如果已经是[0,1],则直接使用
                if ref_img_single.min() < 0:
                    # 从[-1,1]转换到[0,1]
                    ref_img_single = (ref_img_single + 1) / 2
                ref_img_single = torch.clamp(ref_img_single, 0, 1)
                ref_img_path = os.path.join(batch_dir, "original_ref_image.png")
                save_image(ref_img_single, ref_img_path)
            
            # 保存dataset提供的原始crop人脸
            if first_frame_faces is not None:
                dataset_face_single = first_frame_faces[batch_idx]  # [3, face_H, face_W]
                # 处理值域:如果值域是[-1,1],则转换到[0,1];如果已经是[0,1],则直接使用
                if dataset_face_single.min() < 0:
                    # 从[-1,1]转换到[0,1]
                    dataset_face_single = (dataset_face_single + 1) / 2
                dataset_face_single = torch.clamp(dataset_face_single, 0, 1)
                dataset_face_path = os.path.join(batch_dir, "dataset_crop_face.png")
                save_image(dataset_face_single, dataset_face_path)
            
            # 保存人脸解析器生成的方形人脸
            if ref_cropped is not None:
                ref_cropped_single = ref_cropped[batch_idx]  # [3, crop_size, crop_size]
                
                # 添加调试信息
                print(f"[Debug] Parsed face tensor shape: {ref_cropped_single.shape}")
                print(f"[Debug] Parsed face tensor dtype: {ref_cropped_single.dtype}")
                print(f"[Debug] Parsed face tensor device: {ref_cropped_single.device}")
                print(f"[Debug] Parsed face tensor stats: min={ref_cropped_single.min():.4f}, max={ref_cropped_single.max():.4f}, mean={ref_cropped_single.mean():.4f}, std={ref_cropped_single.std():.4f}")
                
                # 检查是否有异常值
                if torch.isnan(ref_cropped_single).any():
                    print(f"[Debug] Warning: Parsed face contains NaN values!")
                if torch.isinf(ref_cropped_single).any():
                    print(f"[Debug] Warning: Parsed face contains Inf values!")
                
                # 处理值域:如果值域是[-1,1],则转换到[0,1];如果已经是[0,1],则直接使用
                if ref_cropped_single.min() < 0:
                    # 从[-1,1]转换到[0,1]
                    ref_cropped_single = (ref_cropped_single + 1) / 2
                ref_cropped_single = torch.clamp(ref_cropped_single, 0, 1)
                
                # 保存处理后的图像
                face_path = os.path.join(batch_dir, "parsed_square_face.png")
                save_image(ref_cropped_single, face_path)
                
                # 额外保存一个未处理的版本用于对比
                raw_face_path = os.path.join(batch_dir, "parsed_square_face_raw.png")
                save_image(ref_cropped[batch_idx], raw_face_path)
            
            # 保存视频路径信息
            info_path = os.path.join(batch_dir, "info.txt")
            with open(info_path, 'w') as f:
                f.write(f"Video Path: {video_path}\n")
                f.write(f"Step: {current_step}\n")
                f.write(f"Batch Index: {batch_idx}\n")
                f.write(f"Face Size: {crop_image_size}x{crop_image_size}\n")
                if first_frame_faces is not None:
                    f.write(f"Dataset Face Size: {first_frame_faces[batch_idx].shape[1]}x{first_frame_faces[batch_idx].shape[2]}\n")
                
                # 添加tensor值域信息
                if ref_image is not None:
                    ref_img_single = ref_image[batch_idx]
                    f.write(f"Original Ref Image Range: [{ref_img_single.min():.4f}, {ref_img_single.max():.4f}]\n")
                
                if first_frame_faces is not None:
                    dataset_face_single = first_frame_faces[batch_idx]
                    f.write(f"Dataset Face Range: [{dataset_face_single.min():.4f}, {dataset_face_single.max():.4f}]\n")
                
                if ref_cropped is not None:
                    ref_cropped_single = ref_cropped[batch_idx]
                    f.write(f"Parsed Face Range: [{ref_cropped_single.min():.4f}, {ref_cropped_single.max():.4f}]\n")
            
            print(f"[Debug] 保存人脸解析器调试图像到: {batch_dir}")
            
    except Exception as e:
        print(f"[Debug] 保存人脸解析器调试图像时出错: {str(e)}")