Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,263 Bytes
400a879 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
import os
import torch
import torch.distributed as dist
from torch.utils.data import DistributedSampler
from safetensors.torch import load_file
import random
import glob
import numpy as np
from torchvision.transforms.functional import resize
from torchvision.transforms import InterpolationMode
from torchvision.utils import save_image
def init_distributed(args):
"""初始化分布式训练环境"""
if not dist.is_initialized():
dist.init_process_group(backend="nccl")
global_rank = dist.get_rank()
world_size = dist.get_world_size()
local_rank = int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
sp_size = 1
dp_size = world_size
if args.use_usp:
sp_size = args.ulysses_degree * args.ring_degree
dp_size = world_size // sp_size
assert sp_size <= world_size, f"sequence parallel size ({sp_size}) must be less than or equal to world size ({world_size})."
assert world_size % sp_size == 0, f"world size ({world_size}) must be divisible by sequence parallel size ({sp_size})."
from xfuser.core.distributed import initialize_model_parallel, init_distributed_environment, get_data_parallel_rank
init_distributed_environment(rank=global_rank, world_size=world_size)
initialize_model_parallel(
data_parallel_degree=dp_size,
sequence_parallel_degree=sp_size,
ring_degree=args.ring_degree,
ulysses_degree=args.ulysses_degree,
)
if dist.is_initialized():
sp_group_id = get_data_parallel_rank()
if global_rank == 0:
base_seed = torch.randint(0, 1000000, (1,)).item()
else:
base_seed = 0
base_seed = torch.tensor([base_seed], device="cuda")
dist.broadcast(base_seed, src=0)
base_seed = base_seed.item()
seed = base_seed + sp_group_id
torch.manual_seed(seed)
return global_rank, world_size, local_rank, sp_size, dp_size
def custom_collate_fn(batch):
"""自定义数据整理函数,用于处理不同长度的视频"""
keys = batch[0].keys()
data = {}
batch_video_length = min([item["video"].shape[1] for item in batch])
for key in keys:
if key=='video': # 截断视频长度
data[key] = [item[key][:,:batch_video_length] for item in batch]
elif key == 'audio_emb':
data[key] = [item[key][:batch_video_length] for item in batch]
elif key == 'audio_embed_speaker1':
data[key] = [item[key][:batch_video_length] for item in batch]
elif key == 'audio_embed_speaker2':
data[key] = [item[key][:batch_video_length] for item in batch]
else:
data[key] = [item[key] for item in batch]
return data
def get_distributed_sampler(dataset, args, global_rank, world_size, sp_size, dp_size):
"""获取分布式采样器"""
if dp_size == 1:
sampler = None
else:
if args.use_usp:
from xfuser.core.distributed import get_data_parallel_rank
dp_rank = get_data_parallel_rank()
else:
dp_rank = global_rank # 避免调用 _DP 相关内容
sampler = DistributedSampler(
dataset,
num_replicas=dp_size,
rank=dp_rank,
shuffle=False
)
if global_rank == 0:
print(f"Using DistributedSampler: dp_size={dp_size}, dp_rank={dp_rank}")
return sampler
def load_predefined_prompt_embeddings(base_dir="./multi_person/prompt_emb_concat", text_len=512):
"""
加载三种预定义的prompt embeddings
Args:
base_dir: 预定义embedding的基础目录
text_len: 文本长度,用于padding或截断
Returns:
dict: 包含三种类型embedding的字典
{
'talk_prompts': list of tensors,
'silent_prompts_left': list of tensors,
'silent_prompts_right': list of tensors
}
"""
prompt_embeddings = {
'talk_prompts': [],
'silent_prompts_left': [],
'silent_prompts_right': []
}
# 定义三个子目录
subdirs = {
'talk_prompts': 'talk_prompts',
'silent_prompts_left': 'silent_prompts_left',
'silent_prompts_right': 'silent_prompts_right'
}
for key, subdir in subdirs.items():
dir_path = os.path.join(base_dir, subdir)
if not os.path.exists(dir_path):
print(f"Warning: Directory {dir_path} does not exist")
continue
# 获取所有.safetensors文件
pattern = os.path.join(dir_path, "*.safetensors")
files = sorted(glob.glob(pattern))
for file_path in files:
try:
# 加载embedding
prompt_data = load_file(file_path)
prompt_emb = prompt_data['context']
# 处理长度
if prompt_emb.shape[0] < text_len:
padding = torch.zeros(text_len - prompt_emb.shape[0], prompt_emb.shape[1])
prompt_emb = torch.cat([prompt_emb, padding], dim=0)
else:
prompt_emb = prompt_emb[:text_len]
prompt_embeddings[key].append(prompt_emb)
except Exception as e:
print(f"Error loading {file_path}: {e}")
continue
print(f"Loaded {len(prompt_embeddings['talk_prompts'])} talk prompts")
print(f"Loaded {len(prompt_embeddings['silent_prompts_left'])} silent left prompts")
print(f"Loaded {len(prompt_embeddings['silent_prompts_right'])} silent right prompts")
return prompt_embeddings
def get_random_prompt_embedding(prompt_embeddings, prompt_type=None, device=None, dtype=None):
"""
从预定义的prompt embeddings中随机选择一个
Args:
prompt_embeddings: 由load_predefined_prompt_embeddings返回的字典
prompt_type: 指定类型 ('talk_prompts', 'silent_prompts_left', 'silent_prompts_right')
如果为None,则随机选择类型
device: 目标设备
dtype: 目标数据类型
Returns:
torch.Tensor: 随机选择的prompt embedding
"""
if prompt_type is None:
# 随机选择类型
available_types = [k for k, v in prompt_embeddings.items() if len(v) > 0]
if not available_types:
raise ValueError("No prompt embeddings available")
prompt_type = random.choice(available_types)
if prompt_type not in prompt_embeddings:
raise ValueError(f"Unknown prompt type: {prompt_type}")
if len(prompt_embeddings[prompt_type]) == 0:
raise ValueError(f"No embeddings available for type: {prompt_type}")
# 随机选择一个embedding
selected_embedding = random.choice(prompt_embeddings[prompt_type])
# 移动到指定设备和类型
if device is not None:
selected_embedding = selected_embedding.to(device)
if dtype is not None:
selected_embedding = selected_embedding.to(dtype)
return selected_embedding
def create_silence_video(video_tensor, cycle_frames=3):
"""
创建沉默视频:使用前N帧循环播放,支持倒序播放模式
Args:
video_tensor: [b, 3, F, H, W] 原始视频tensor
cycle_frames: int, 循环播放的帧数,默认为2
Returns:
silence_video: [b, 3, F, H, W] 沉默视频tensor
播放模式:
- cycle_frames=2: 12121212... (原逻辑)
- cycle_frames=3: 123123123...
- cycle_frames=4: 1234543212345... (倒序模式)
- cycle_frames=5: 1234543212345...
"""
batch_size, channels, num_frames, height, width = video_tensor.shape
# 确保cycle_frames不超过视频总帧数
cycle_frames = min(cycle_frames, num_frames)
# 获取前cycle_frames帧
cycle_video = video_tensor[:, :, :cycle_frames, :, :] # [b, 3, cycle_frames, H, W]
if cycle_frames <= 2:
# 对于1-2帧,使用简单的交替模式
if cycle_frames == 1:
# 单帧重复
silence_video = cycle_video.repeat(1, 1, num_frames, 1, 1)
else:
# 双帧交替:12121212...
frame_1 = cycle_video[:, :, 0:1, :, :] # [b, 3, 1, H, W]
frame_2 = cycle_video[:, :, 1:2, :, :] # [b, 3, 1, H, W]
repeat_times = (num_frames + 1) // 2
frame_1_repeated = frame_1.repeat(1, 1, repeat_times, 1, 1)
frame_2_repeated = frame_2.repeat(1, 1, repeat_times, 1, 1)
silence_frames = torch.stack([frame_1_repeated, frame_2_repeated], dim=3)
silence_frames = silence_frames.view(batch_size, channels, repeat_times * 2, height, width)
silence_video = silence_frames[:, :, :num_frames, :, :]
else:
# 对于3帧以上,使用倒序模式:1234543212345...
# 创建一个完整的循环周期:123...cycle_frames...321
forward_frames = cycle_video # [b, 3, cycle_frames, H, W]
reverse_frames = torch.flip(cycle_video[:, :, 1:-1, :, :], dims=[2]) # [b, 3, cycle_frames-2, H, W]
# 拼接一个完整周期:123...cycle_frames...321
one_cycle = torch.cat([forward_frames, reverse_frames], dim=2) # [b, 3, 2*cycle_frames-2, H, W]
cycle_length = 2 * cycle_frames - 2
# 计算需要多少个完整周期
num_cycles = (num_frames + cycle_length - 1) // cycle_length
# 重复完整周期
repeated_cycles = one_cycle.repeat(1, 1, num_cycles, 1, 1) # [b, 3, num_cycles*cycle_length, H, W]
# 截断到所需帧数
silence_video = repeated_cycles[:, :, :num_frames, :, :] # [b, 3, F, H, W]
return silence_video
def extract_square_faces_from_ref_images(face_parser, ref_images, video_paths, first_frame_faces, crop_size=224, device=None, torch_dtype=None, global_rank=0, current_global_step=0):
"""
使用人脸解析器从参考图像中提取方形人脸,如果检测不到人脸则回退到dataset提供的crop人脸
Args:
face_parser: FaceInference实例
ref_images: list of tensors, 每个tensor shape: [3, H, W]
video_paths: list of str, 对应的视频路径
first_frame_faces: tensor, dataset提供的crop人脸 [b, 3, face_H, face_W]
crop_size: int, 裁剪后的人脸尺寸
device: torch设备
torch_dtype: torch数据类型
global_rank: 全局rank,用于控制日志输出
current_global_step: 当前训练步数
Returns:
list of tensors: 每个tensor shape: [3, crop_size, crop_size]
"""
square_faces = []
for i, (ref_image, video_path) in enumerate(zip(ref_images, video_paths)):
try:
# 将tensor转换为numpy数组用于人脸检测
# ref_image shape: [3, H, W], 需要转换为 [H, W, 3]
# 确保转换为float32类型,避免BFloat16问题
ref_image_np = ref_image.permute(1, 2, 0).cpu().float().numpy()
# 处理值域:如果值域是[-1,1],则转换到[0,1];如果已经是[0,1],则直接使用
if ref_image_np.min() < 0:
# 从[-1,1]转换到[0,1]
ref_image_np = (ref_image_np + 1) / 2
ref_image_np = np.clip(ref_image_np, 0, 1)
# 转换为uint8格式
ref_image_np = (ref_image_np * 255).astype(np.uint8)
# # 添加调试信息
# if global_rank == 0 and current_global_step % 100 == 0:
# print(f"[Face Parser] 原始ref_image值域: [{ref_image.min():.4f}, {ref_image.max():.4f}]")
# print(f"[Face Parser] 转换后numpy数组值域: [{ref_image_np.min()}, {ref_image_np.max()}]")
# print(f"[Face Parser] 转换后numpy数组形状: {ref_image_np.shape}")
# 使用人脸解析器检测人脸
face_result = face_parser.infer_from_array(ref_image_np, n=1) # 只取最大的人脸
if face_result and 'bboxes' in face_result and len(face_result['bboxes']) > 0:
# 获取第一个(最大的)人脸的bbox
bbox = face_result['bboxes'][0] # [x, y, width, height]
x, y, w, h = bbox
# 从原图中裁剪人脸区域
face_crop = ref_image_np[int(y):int(y+h), int(x):int(x+w)]
# # 添加调试信息
# if global_rank == 0 and current_global_step % 100 == 0:
# print(f"[Face Parser] 成功提取人脸 {i}: bbox=[{x:.1f}, {y:.1f}, {w:.1f}, {h:.1f}]")
# print(f"[Face Parser] 裁剪后的人脸形状: {face_crop.shape}")
# print(f"[Face Parser] 裁剪后的人脸值域: [{face_crop.min()}, {face_crop.max()}]")
# 将numpy数组转换回tensor并调整尺寸
face_tensor = torch.from_numpy(face_crop).permute(2, 0, 1).float() / 255.0
face_tensor = resize(face_tensor, size=(crop_size, crop_size), interpolation=InterpolationMode.BILINEAR)
# # 添加更多调试信息
# if global_rank == 0 and current_global_step % 100 == 0:
# print(f"[Face Parser] 调整尺寸后的tensor形状: {face_tensor.shape}")
# print(f"[Face Parser] 调整尺寸后的tensor值域: [{face_tensor.min():.4f}, {face_tensor.max():.4f}]")
square_faces.append(face_tensor.to(device, dtype=torch_dtype))
else:
# 如果没有检测到人脸,回退到使用dataset提供的crop人脸
dataset_face = first_frame_faces[i] # [3, face_H, face_W]
# 添加调试信息
if global_rank == 0 :
print(f"[Face Parser] 未检测到人脸 {i},回退到dataset提供的crop人脸")
print(f"[Face Parser] Dataset人脸形状: {dataset_face.shape}")
print(f"[Face Parser] Dataset人脸值域: [{dataset_face.min():.4f}, {dataset_face.max():.4f}]")
face_tensor = resize(dataset_face, size=(crop_size, crop_size), interpolation=InterpolationMode.BILINEAR)
# 添加更多调试信息
if global_rank == 0:
print(f"[Face Parser] 调整尺寸后的dataset人脸形状: {face_tensor.shape}")
print(f"[Face Parser] 调整尺寸后的dataset人脸值域: [{face_tensor.min():.4f}, {face_tensor.max():.4f}]")
square_faces.append(face_tensor.to(device, dtype=torch_dtype))
except Exception as e:
# 异常情况下回退到使用dataset提供的crop人脸
dataset_face = first_frame_faces[i] # [3, face_H, face_W]
# 添加调试信息
if global_rank == 0:
print(f"[Face Parser] 处理图像 {i} 时出错: {str(e)},回退到dataset提供的crop人脸")
print(f"[Face Parser] 异常回退 - Dataset人脸形状: {dataset_face.shape}")
print(f"[Face Parser] 异常回退 - Dataset人脸值域: [{dataset_face.min():.4f}, {dataset_face.max():.4f}]")
face_tensor = resize(dataset_face, size=(crop_size, crop_size), interpolation=InterpolationMode.BILINEAR)
# 添加更多调试信息
if global_rank == 0:
print(f"[Face Parser] 异常回退 - 调整尺寸后的tensor形状: {face_tensor.shape}")
print(f"[Face Parser] 异常回退 - 调整尺寸后的tensor值域: [{face_tensor.min():.4f}, {face_tensor.max():.4f}]")
square_faces.append(face_tensor.to(device, dtype=torch_dtype))
return square_faces
def save_face_parser_debug_images(ref_cropped_list, ref_image, video_paths, first_frame_faces, current_step, crop_image_size, debug_dir="./logs/debug/ref", global_rank=0):
"""
保存人脸解析器的调试图像到debug目录
Args:
ref_cropped_list: list of tensors, 人脸解析器生成的方形人脸
ref_image: tensor, 原始参考图像
video_paths: list of str, 视频路径
first_frame_faces: tensor, dataset提供的crop人脸
current_step: int, 当前训练步数
crop_image_size: int, 裁剪图像尺寸
debug_dir: str, 调试目录路径
"""
try:
# 只在rank 0时创建debug目录
if global_rank == 0:
os.makedirs(debug_dir, exist_ok=True)
os.chmod(debug_dir, 0o777)
# 保存每个batch的调试图像
for batch_idx, (ref_cropped, video_path) in enumerate(zip(ref_cropped_list, video_paths)):
# 只在rank 0时创建子目录
if global_rank == 0:
batch_dir = os.path.join(debug_dir, f"step_{current_step}_batch_{batch_idx}")
os.makedirs(batch_dir, exist_ok=True)
os.chmod(batch_dir, 0o777)
# 保存原始参考图像
if ref_image is not None:
ref_img_single = ref_image[batch_idx] # [3, H, W]
# 处理值域:如果值域是[-1,1],则转换到[0,1];如果已经是[0,1],则直接使用
if ref_img_single.min() < 0:
# 从[-1,1]转换到[0,1]
ref_img_single = (ref_img_single + 1) / 2
ref_img_single = torch.clamp(ref_img_single, 0, 1)
ref_img_path = os.path.join(batch_dir, "original_ref_image.png")
save_image(ref_img_single, ref_img_path)
# 保存dataset提供的原始crop人脸
if first_frame_faces is not None:
dataset_face_single = first_frame_faces[batch_idx] # [3, face_H, face_W]
# 处理值域:如果值域是[-1,1],则转换到[0,1];如果已经是[0,1],则直接使用
if dataset_face_single.min() < 0:
# 从[-1,1]转换到[0,1]
dataset_face_single = (dataset_face_single + 1) / 2
dataset_face_single = torch.clamp(dataset_face_single, 0, 1)
dataset_face_path = os.path.join(batch_dir, "dataset_crop_face.png")
save_image(dataset_face_single, dataset_face_path)
# 保存人脸解析器生成的方形人脸
if ref_cropped is not None:
ref_cropped_single = ref_cropped[batch_idx] # [3, crop_size, crop_size]
# 添加调试信息
print(f"[Debug] Parsed face tensor shape: {ref_cropped_single.shape}")
print(f"[Debug] Parsed face tensor dtype: {ref_cropped_single.dtype}")
print(f"[Debug] Parsed face tensor device: {ref_cropped_single.device}")
print(f"[Debug] Parsed face tensor stats: min={ref_cropped_single.min():.4f}, max={ref_cropped_single.max():.4f}, mean={ref_cropped_single.mean():.4f}, std={ref_cropped_single.std():.4f}")
# 检查是否有异常值
if torch.isnan(ref_cropped_single).any():
print(f"[Debug] Warning: Parsed face contains NaN values!")
if torch.isinf(ref_cropped_single).any():
print(f"[Debug] Warning: Parsed face contains Inf values!")
# 处理值域:如果值域是[-1,1],则转换到[0,1];如果已经是[0,1],则直接使用
if ref_cropped_single.min() < 0:
# 从[-1,1]转换到[0,1]
ref_cropped_single = (ref_cropped_single + 1) / 2
ref_cropped_single = torch.clamp(ref_cropped_single, 0, 1)
# 保存处理后的图像
face_path = os.path.join(batch_dir, "parsed_square_face.png")
save_image(ref_cropped_single, face_path)
# 额外保存一个未处理的版本用于对比
raw_face_path = os.path.join(batch_dir, "parsed_square_face_raw.png")
save_image(ref_cropped[batch_idx], raw_face_path)
# 保存视频路径信息
info_path = os.path.join(batch_dir, "info.txt")
with open(info_path, 'w') as f:
f.write(f"Video Path: {video_path}\n")
f.write(f"Step: {current_step}\n")
f.write(f"Batch Index: {batch_idx}\n")
f.write(f"Face Size: {crop_image_size}x{crop_image_size}\n")
if first_frame_faces is not None:
f.write(f"Dataset Face Size: {first_frame_faces[batch_idx].shape[1]}x{first_frame_faces[batch_idx].shape[2]}\n")
# 添加tensor值域信息
if ref_image is not None:
ref_img_single = ref_image[batch_idx]
f.write(f"Original Ref Image Range: [{ref_img_single.min():.4f}, {ref_img_single.max():.4f}]\n")
if first_frame_faces is not None:
dataset_face_single = first_frame_faces[batch_idx]
f.write(f"Dataset Face Range: [{dataset_face_single.min():.4f}, {dataset_face_single.max():.4f}]\n")
if ref_cropped is not None:
ref_cropped_single = ref_cropped[batch_idx]
f.write(f"Parsed Face Range: [{ref_cropped_single.min():.4f}, {ref_cropped_single.max():.4f}]\n")
print(f"[Debug] 保存人脸解析器调试图像到: {batch_dir}")
except Exception as e:
print(f"[Debug] 保存人脸解析器调试图像时出错: {str(e)}")
|