import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Load your model model_name = "CJHauser/PrisimAI-t5" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) def answer_question(context, question): input_text = f"question: {question} context: {context}" inputs = tokenizer.encode(input_text, return_tensors="pt", truncation=True) outputs = model.generate(inputs, max_length=128) answer = tokenizer.decode(outputs[0], skip_special_tokens=True) return answer # Gradio UI with gr.Blocks() as demo: gr.Markdown("# 🤖 PrisimAI Q&A\nAsk questions based on a given context.") with gr.Row(): context = gr.Textbox(label="Context", placeholder="Paste your reference text here...", lines=8) question = gr.Textbox(label="Your Question", placeholder="What do you want to know?") answer = gr.Textbox(label="Answer", interactive=False) btn = gr.Button("Get Answer") btn.click(fn=answer_question, inputs=[context, question], outputs=answer) demo.launch()