File size: 9,182 Bytes
bd8ff84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115555e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import utils
import time
import os
import numpy as np

import mne
from mne.channels import read_custom_montage

def reorder_data(filename, old_idx, fill_mode, state_obj):
	old_data = utils.read_train_data(filename)
	new_data = np.zeros((30, old_data.shape[1]))
	new_filename = state_obj["filepath"]+'mapped.csv'
	#print('old data shape: ', old_data.shape)
	
	zero_arr = np.zeros((1, old_data.shape[1]))
	old_data = np.concatenate((old_data, zero_arr), axis=0)
	
	for i in range(30):
		curr_idx_set = old_idx[i]
		#print("channel_{}'s index set: {}".format(i, curr_idx_set))
		
		if curr_idx_set == []:
			new_data[i, :] = zero_arr
		else:
			tmp_data = [old_data[j, :] for j in curr_idx_set]
			new_data[i, :] = np.mean(tmp_data, axis=0)

	#print('new data shape: ', new_data.shape)
	utils.save_data(new_data, new_filename)
	return


class Channel:

	def __init__(self, index, name=None, used=False, coord=None, css_position=None, topo_index=None, topo_position=None):

		self.name = name
		self.index = index
		self.used = used
		self.coord = coord
		self.css_position = css_position
		self.topo_index = topo_index
		self.topo_position = topo_position

	def prefix(self):
		ret = ''.join(filter(str.isalpha, self.name))
		return ret[:len(ret) - 1] if ret[-1] == 'Z' else ret

	def suffix(self):
		return -1 if self.name[-1] == 'Z' else int(''.join(filter(str.isdigit, self.name)))


def pack_data(new_idx, missing_channels, tpl_dict, in_dict, tpl_ordered_name, in_ordered_name):
	
	return {
		"newOrder" : [([i] if i!=-1 else []) for i in new_idx],
		"missingChannelsIndex" : missing_channels,
		"templateByName" : {k : v.__dict__ for k,v in tpl_dict.items()},  # dict, {name:object}
		"templateByIndex" : tpl_ordered_name, # list
		"inputByName" : {k : v.__dict__ for k,v in in_dict.items()},
		"inputByIndex" : in_ordered_name
	}

def mapping(data_file, loc_file, fill_mode):
	second1 = time.time()
	
	data = utils.read_train_data(data_file)
	
	template_dict = {}
	input_dict = {}
	template_montage = read_custom_montage("./template_chanlocs.loc")
	input_montage = read_custom_montage(loc_file)
	
	montages = [template_montage, input_montage]
	dicts = [template_dict, input_dict]
	num = [30, len(input_montage.ch_names)]
	
	for i in range(2):
		fig = montages[i].plot()
		fig.set_size_inches(5.6, 5.6)
		ax = fig.axes[0]
		ax.set_aspect('equal')
		ax.figure.canvas.draw() #update the figure
		coords = ax.collections[0].get_offsets().data
		abs_coords = ax.transData.transform(coords)
		#print("abs_coords)
		for j in range(num[i]):
			channel = montages[i].ch_names[j]
	        
	        # convert all channel names to uppercase
			montages[i].rename_channels({channel: str.upper(channel)})
	        
			css_left = (abs_coords[j][0]-11)/560
			css_bottom = (abs_coords[j][1]-7)/560
			channel = str.upper(channel)
			dicts[i][channel] = Channel(index=j,
										name=channel,
										coord=montages[i].get_positions()['ch_pos'][channel],
										css_position=[str(round(css_left*100, 2))+"%", str(round(css_bottom*100, 2))+"%"]
								)
	
	
	new_idx = [-1]*30
	missing_channels = []
	exact_missing_channels = []
	z_row_idx = data.shape[0]
	
	
	# STAGE_1
	
	# match the template's channel names with the input ones
	finish_flag = 1
	alias = {
		'T3': 'T7',
		'T4': 'T8',
		'T5': 'P7',
		'T6': 'P8',
		'TP7': 'T5\'',
		'TP8': 'T6\'',
	}
	
	for i in range(30):
		channel = template_montage.ch_names[i]
		if channel not in input_dict.keys() | alias.keys():
			exact_missing_channels.append(i)
			finish_flag = 0
			continue

		if channel not in input_dict and channel in alias:
			if alias[channel] in input_dict:
				template_montage.rename_channels({channel: alias[channel]})
				template_dict[alias[channel]] = template_dict.pop(channel)
				template_dict[alias[channel]].name = alias[channel]
				channel = alias[channel]
			else:
				exact_missing_channels.append(i)
				finish_flag = 0
				continue

		new_idx[i] = input_dict[channel].index
		input_dict[channel].used = True

	if finish_flag == 1:
		second2 = time.time()
		print('Finish at stage 1 ! (',second2 - second1,'s)')
		#print('new idx order:', new_idx)

		channels_obj = pack_data(new_idx, [],
						template_dict, input_dict,
						template_montage.ch_names, input_montage.ch_names)
		channels_obj.update({"CZImputed" : False})
		return channels_obj
		
	elif fill_mode == "mean":
		channels_obj = pack_data(new_idx, exact_missing_channels,
						template_dict, input_dict,
						template_montage.ch_names, input_montage.ch_names)
		channels_obj.update({"CZImputed" : False})
		return channels_obj
	
	
	
	
	# STAGE_2
	
	# store channel positions in a 2-d array
	template_topo_pos = []  
	temporal_channels = []
	temporal_row_prefix = ['FC', 'C', 'CP', 'P']

	cnt = 0
	for i in range(7):
		tmp = []
		for j in range(5):
			if [i,j] in [[0,0],[0,2],[0,4],[6,0],[6,4]]:
				tmp.append('')
			else:
				channel = template_montage.ch_names[cnt]
				tmp.append(channel)

				ver = 'front' if i<3 else 'center' if i==3 else 'back'
				hor = 'left' if j<2 else 'center' if j==2 else 'right'
				template_dict[channel].topo_index = [i, j]
				template_dict[channel].topo_position = [ver, hor]

				if i > 1 and j in [0, 4]:
					temporal_channels.append(channel)
				cnt += 1
		template_topo_pos.append(tmp)
		

	# ensure that CZ is found or imputed by another channel
	CZ_impute_flag = False
	if 'CZ' not in input_dict and fill_mode=='adjacent':
		CZ_impute_flag = True
		min_dist = 1e5
		for channel in input_montage.ch_names:
			curr_x, curr_y, curr_z = input_dict[channel].coord.round(6)
			if curr_x**2 + curr_y**2 < min_dist:
				nearest_channel = channel
				min_dist = curr_x**2 + curr_y**2

		if input_dict[nearest_channel].used == True:
			missing_channels.append(template_dict['CZ'].index)
		input_dict[nearest_channel].used = True
		input_dict['CZ'] = input_dict[nearest_channel]
		print("CZ's nearest neighbor:", nearest_channel)


	for i in range(30):
		if new_idx[i] != -1:
			continue

		channel = template_montage.ch_names[i]

		curr_prefix = template_dict[channel].prefix()
		curr_suffix = template_dict[channel].suffix()

		curr_row = template_dict[channel].topo_index[0]
		curr_col = template_dict[channel].topo_index[1]
		curr_ver = template_dict[channel].topo_position[0]
		curr_hor = template_dict[channel].topo_position[1]

		impute_channel = ''

		# if the current channel is a temporal channel
		if channel in temporal_channels:
			curr_prefix = temporal_row_prefix[temporal_channels.index(channel)//2]
			curr_suffix = 7 if curr_hor=='left' else 8

		if fill_mode == 'zero':

			impute_channel = curr_prefix+str(1) if curr_hor=='center' else curr_prefix+str(curr_suffix-2)
			if impute_channel not in input_dict or input_dict[impute_channel].used==True:
				impute_channel = ''
				new_idx[i] = z_row_idx
				missing_channels.append(i)
				continue
		
		elif fill_mode == 'adjacent':
			
			ver_dir = 1 if curr_ver == 'front' else -1
            
			if curr_hor == 'center':  # FZ, FPZ...

				if curr_prefix+str(1) in input_dict:  # ex: FZ<-F1
					impute_channel = curr_prefix + str(1)
					
				elif template_topo_pos[curr_row+ver_dir][curr_col] in input_dict: # ex: front:FZ<-FCZ,
				    impute_channel = template_topo_pos[curr_row+ver_dir][curr_col]
					
				elif curr_prefix+str(3) in input_dict: # ex: FZ<-F3
					impute_channel = curr_prefix + str(3)
					
				else:
					impute_channel = 'CZ'
					
			elif curr_hor == 'left' or curr_hor == 'right':

				ver_ctrl = 1 if curr_ver=='front' else 2 if curr_ver=='back' else 3 # bit0: row+1, bit1: row-1

				# search horizontally
				cnt = 0
				tmp_suffix = curr_suffix
				while tmp_suffix > 0:  # ex: F7<-F5/F3/F1
					tmp_suffix = curr_suffix - 2*cnt
					if curr_prefix+str(tmp_suffix) in input_dict:
						impute_channel = curr_prefix + str(tmp_suffix)
						break

					if cnt == 2:
						# check row+1/row-1
						if ver_ctrl&1 and template_topo_pos[curr_row+1][curr_col] in input_dict:
							impute_channel = template_topo_pos[curr_row+1][curr_col]
							break
						if ver_ctrl&2 and template_topo_pos[curr_row-1][curr_col] in input_dict:
							impute_channel = template_topo_pos[curr_row-1][curr_col]
							break
					cnt += 1

				# search vertically
				if impute_channel == '':
					cnt = 0
					tmp_row = curr_row + ver_dir
					while tmp_row-ver_dir != 3:  # terminate if the last channel is a middle one
						if template_topo_pos[tmp_row][curr_col] in input_dict:
							impute_channel = template_topo_pos[tmp_row][curr_col]
							break
						tmp_row += ver_dir

				# if still cannot find available channel...
				if impute_channel == '':
					impute_channel = 'CZ'

		new_idx[i] = input_dict[impute_channel].index
		if input_dict[impute_channel].used == True:  # this channel is shared with others
			missing_channels.append(i)
		input_dict[impute_channel].used = True
	
	second2 = time.time()
	print('Finish at stage 2 ! (',second2 - second1,'s)')
	#print('new_idx:', new_idx)
	
	channels_obj = pack_data(new_idx, missing_channels,
						template_dict, input_dict,
						template_montage.ch_names, input_montage.ch_names)
	channels_obj.update({"CZImputed" : CZ_impute_flag})
	return channels_obj
	
# reload