File size: 5,747 Bytes
c58daf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# https://github.com/milesial/Pytorch-UNet
""" Full assembly of the parts to form the complete network """

import torch
import torch.nn as nn
import torch.nn.functional as F


class DoubleConv(nn.Module):
    """(convolution => [BN] => ReLU) * 2"""

    def __init__(self, in_channels, out_channels,kernel_size=7):
        super().__init__()
        padding = int((kernel_size - 1) / 2)

        self.double_conv = nn.Sequential(
            nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, padding=padding),
            nn.BatchNorm1d(out_channels),
            nn.Sigmoid(),
            #nn.ReLU(inplace=True),
            nn.Conv1d(out_channels, out_channels, kernel_size=kernel_size, padding=padding),
            nn.BatchNorm1d(out_channels),
            #nn.ReLU(inplace=True)
            nn.Sigmoid()
        )

    def forward(self, x):
        return self.double_conv(x)


class Down(nn.Module):
    """Downscaling with maxpool then double conv"""

    def __init__(self, in_channels, out_channels, kernel_size):
        super().__init__()
        self.maxpool_conv = nn.Sequential(
            nn.MaxPool1d(2),
            DoubleConv(in_channels, out_channels,kernel_size)
        )

    def forward(self, x):
        return self.maxpool_conv(x)


class Up(nn.Module):
    """Upscaling then double conv"""

    def __init__(self, in_channels, out_channels, kernel_size, bilinear=True):
        super().__init__()

        # if bilinear, use the normal convolutions to reduce the number of channels
        if bilinear:
            # self.up = F.interpolate()
            self.up = nn.Upsample(scale_factor=2, mode='linear', align_corners=False)
        else:
            self.up = nn.ConvTranspose1d(in_channels // 2, in_channels // 2, kernel_size=2, stride=2)

        self.conv = DoubleConv(in_channels, out_channels, kernel_size)

    def forward(self, x1, x2):
        x = self.up(x1)
        # input is CHW
        #diffY = torch.tensor([x2.size()[2] - x1.size()[2]])
        #diffX = torch.tensor([x2.size()[3] - x1.size()[3]])

        #x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
        #                diffY // 2, diffY - diffY // 2])
        # if you have padding issues, see
        # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
        # https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd
        #x = torch.cat([x2, x1], dim=1)
        return self.conv(x)


class OutConv(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size):
        super(OutConv, self).__init__()
        padding = int((kernel_size - 1) / 2)
        self.conv = nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, padding=padding, bias=True)

    def forward(self, x):
        return self.conv(x)

class UNet0(nn.Module):
    def __init__(self, n_channels, n_classes, bilinear=True):
        super(UNet0, self).__init__()
        self.n_channels = n_channels
        self.n_classes = n_classes
        self.bilinear = bilinear

        self.inc = DoubleConv(n_channels, 64, kernel_size=7)
        self.down1 = Down(64, 128, kernel_size=7)
        self.down2 = Down(128, 256,kernel_size=5)
        #self.down3 = Down(256, 512,kernel_size=3)
        #self.up1 = Up(512, 256, kernel_size=3)
        self.up2 = Up(256, 128, kernel_size=3)
        self.up3 = Up(128, 64, kernel_size=3)
        self.outc = OutConv(64, n_classes,kernel_size=1)

    def forward(self, x):
        x1 = self.inc(x)
        x2 = self.down1(x1)
        x3 = self.down2(x2)
        #x4 = self.down3(x3)
        #x = self.up1(x4, x3)
        x = self.up2(x3, x2)
        x = self.up3(x, x1)
        logits = self.outc(x)
        return logits

class UNet1(nn.Module):
    def __init__(self, n_channels, n_classes, bilinear=True):
        super(UNet1, self).__init__()
        self.n_channels = n_channels
        self.n_classes = n_classes
        self.bilinear = bilinear

        self.inc = DoubleConv(n_channels, 64, kernel_size=7)
        self.down1 = Down(64, 128, kernel_size=7)
        self.down2 = Down(128, 256,kernel_size=5)
        self.down3 = Down(256, 512,kernel_size=3)
        self.up1 = Up(512, 256, kernel_size=3)
        self.up2 = Up(256, 128, kernel_size=3)
        self.up3 = Up(128, 64, kernel_size=3)
        self.outc = OutConv(64, n_classes,kernel_size=1)

    def forward(self, x):
        x1 = self.inc(x)
        x2 = self.down1(x1)
        x3 = self.down2(x2)
        x4 = self.down3(x3)
        x = self.up1(x4, x3)
        x = self.up2(x, x2)
        x = self.up3(x, x1)
        logits = self.outc(x)
        return logits

class UNet2(nn.Module):
    def __init__(self, n_channels, n_classes, bilinear=True):
        super(UNet2, self).__init__()
        self.n_channels = n_channels
        self.n_classes = n_classes
        self.bilinear = bilinear

        self.inc = DoubleConv(n_channels, 64, kernel_size=7)
        self.down1 = Down(64, 128, kernel_size=7)
        self.down2 = Down(128, 256,kernel_size=5)
        self.down3 = Down(256, 512,kernel_size=3)
        self.down4 = Down(512, 1024, kernel_size=3)
        self.up = Up(1024, 512, kernel_size=3)
        self.up1 = Up(512, 256, kernel_size=3)
        self.up2 = Up(256, 128, kernel_size=3)
        self.up3 = Up(128, 64, kernel_size=3)
        self.outc = OutConv(64, n_classes,kernel_size=1)

    def forward(self, x):
        x1 = self.inc(x)
        x2 = self.down1(x1)
        x3 = self.down2(x2)
        x4 = self.down3(x3)
        x5 = self.down4(x4)
        x = self.up(x5, x4)
        x = self.up1(x, x3)
        x = self.up2(x, x2)
        x = self.up3(x, x1)
        logits = self.outc(x)
        return logits