File size: 13,227 Bytes
c58daf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import math, copy
from torch.autograd import Variable


# ---------------------Encoder and Decoder Stacks--------------------
class EncoderDecoder(nn.Module):
    """
    A standard Encoder-Decoder architecture. Base for this and many 
    other models.
    """
    def __init__(self, encoder, decoder, src_embed, tgt_embed, generator):
        super(EncoderDecoder, self).__init__()
        self.encoder = encoder
        self.decoder = decoder
        self.src_embed = src_embed
        self.tgt_embed = tgt_embed
        self.generator = generator
        
    def forward(self, src, tgt, src_mask, tgt_mask):
        "Take in and process masked src and target sequences."
        return self.decode(self.encode(src, src_mask), src_mask,
                            tgt, tgt_mask)
    
    def encode(self, src, src_mask):
        #print("encode1:", src.shape)
        #temp = self.src_embed(src)
        #print("encode2:", temp.shape)
        return self.encoder(self.src_embed(src), src_mask)
    
    def decode(self, memory, src_mask, tgt, tgt_mask):
        #print("decode1:", memory.shape)
        #print("decode2:", src_mask.shape)
        #print("decode3:", tgt.shape)
        #print("decode4:", tgt_mask.shape)

        #temp = self.tgt_embed(tgt)
        #print("decode5:", temp.shape)
        return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)
        

class Generator(nn.Module):
    "Define standard linear + softmax generation step."
    def __init__(self, d_model, vocab):
        super(Generator, self).__init__()
        self.proj = nn.Linear(d_model, vocab)

    def forward(self, x):
        '''
        temp = self.proj(x)
        print("Generator1:", temp.shape)
        draw(3, temp[0, :, :], "Gen(lp)_" + str(2))
        temp = F.log_softmax(self.proj(x), dim=-1)
        print("Generator2:", temp.shape)
        draw(3, temp[0, :, :], "Gen(sm)_" + str(3))
        '''
        #return F.log_softmax(self.proj(x), dim=-1)
        return self.proj(x)
        
# ---------------------Encoder--------------------
def clones(module, N):
    "Produce N identical layers."
    return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])

class Encoder(nn.Module):
    "Core encoder is a stack of N layers"
    def __init__(self, layer, N):
        super(Encoder, self).__init__()
        self.layers = clones(layer, N)
        self.norm = LayerNorm(layer.size)
        
    def forward(self, x, mask):
        "Pass the input (and mask) through each layer in turn."
        for layer in self.layers:
            x = layer(x, mask)
        return self.norm(x)
        
class LayerNorm(nn.Module):
    "Construct a layernorm module (See citation for details)."
    def __init__(self, features, eps=1e-6):
        super(LayerNorm, self).__init__()
        self.a_2 = nn.Parameter(torch.ones(features))
        self.b_2 = nn.Parameter(torch.zeros(features))
        self.eps = eps

    def forward(self, x):
        mean = x.mean(-1, keepdim=True)
        std = x.std(-1, keepdim=True)
        return self.a_2 * (x - mean) / (std + self.eps) + self.b_2        


class SublayerConnection(nn.Module):
    """
    A residual connection followed by a layer norm.
    Note for code simplicity the norm is first as opposed to last.
    """
    def __init__(self, size, dropout):
        super(SublayerConnection, self).__init__()
        self.norm = LayerNorm(size)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, sublayer):
        "Apply residual connection to any sublayer with the same size."
        return x + self.dropout(sublayer(self.norm(x)))

class EncoderLayer(nn.Module):
    "Encoder is made up of self-attn and feed forward (defined below)"
    def __init__(self, size, self_attn, feed_forward, dropout):
        super(EncoderLayer, self).__init__()
        self.self_attn = self_attn
        self.feed_forward = feed_forward
        self.sublayer = clones(SublayerConnection(size, dropout), 2)
        self.size = size

    def forward(self, x, mask):
        "Follow Figure 1 (left) for connections."
        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
        #print("EncoderLayer2: ", x.shape)
        return self.sublayer[1](x, self.feed_forward)

# ---------------------Decoder--------------------
class Decoder(nn.Module):
    "Generic N layer decoder with masking."
    def __init__(self, layer, N):
        super(Decoder, self).__init__()
        self.layers = clones(layer, N)
        self.norm = LayerNorm(layer.size)
        
    def forward(self, x, memory, src_mask, tgt_mask):
        for layer in self.layers:
            x = layer(x, memory, src_mask, tgt_mask)
        return self.norm(x)

class DecoderLayer(nn.Module):
    "Decoder is made of self-attn, src-attn, and feed forward (defined below)"
    def __init__(self, size, self_attn, src_attn, feed_forward, dropout):
        super(DecoderLayer, self).__init__()
        self.size = size
        self.self_attn = self_attn
        self.src_attn = src_attn
        self.feed_forward = feed_forward
        self.sublayer = clones(SublayerConnection(size, dropout), 3)
 
    def forward(self, x, memory, src_mask, tgt_mask):
        "Follow Figure 1 (right) for connections."
        m = memory
        #print("DecoderLayer1:", x.shape)
        #print("DecoderLayer2:", memory.shape)
        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask))
        #print("DecoderLayer3:", src_mask.shape)
        #print("DecoderLayer4:", tgt_mask.shape)
        x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask))
        #print("DecoderLayer5:", tgt_mask.shape)
        x = self.sublayer[2](x, self.feed_forward)
        #print("DecoderLayer6:", tgt_mask.shape)
        #time.sleep(5)
        return x


def subsequent_mask(size):
    "Mask out subsequent positions."
    attn_shape = (1, size, size)
    subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
    return torch.from_numpy(subsequent_mask) == 0


#---------------------Attention--------------------        
def attention(query, key, value, mask=None, dropout=None):
    "Compute 'Scaled Dot Product Attention'"
    #print("attention1:", query.shape, key.transpose(-2, -1).shape, value.shape, mask.shape)
    d_k = query.size(-1)
    scores = torch.matmul(query, key.transpose(-2, -1)) \
             / math.sqrt(d_k)
    #print("attention2:", d_k, scores.shape)
    #draw(3, scores[0, 0, :, :], "scores_" + str(1))
    if mask is not None:
        scores = scores.masked_fill(mask == 0, -1e9)
        #draw(3, scores[0, 0, :, :], "scores_" + str(2))
    p_attn = F.softmax(scores, dim = -1)
    #draw(3, p_attn[0, 0, :, :], "scores_" + str(3))
    if dropout is not None:
        p_attn = dropout(p_attn)
        #draw(3, p_attn[0, 0, :, :], "scores_" + str(4))
    return torch.matmul(p_attn, value), p_attn
    
class MultiHeadedAttention(nn.Module):
    def __init__(self, h, d_model, dropout=0.1):
        "Take in model size and number of heads."
        super(MultiHeadedAttention, self).__init__()
        assert d_model % h == 0
        # We assume d_v always equals d_k
        self.d_k = d_model // h
        self.h = h
        self.linears = clones(nn.Linear(d_model, d_model), 4)
        self.attn = None
        self.dropout = nn.Dropout(p=dropout)
        
    def forward(self, query, key, value, mask=None):
        if mask is not None:
            # Same mask applied to all h heads.
            mask = mask.unsqueeze(1)
        nbatches = query.size(0)
        #print("MultiHeadedAttention1:", query.shape, key.shape, value.shape, mask.shape)
        
        # 1) Do all the linear projections in batch from d_model => h x d_k 
        query, key, value = \
            [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
             for l, x in zip(self.linears, (query, key, value))]

        '''
        print("MultiHeadedAttention2:", query.shape, key.shape, value.shape)
        for i in range(self.h):
            draw(3, query[0,i,:,:], "Query_"+str(i))
            draw(3, key[0, i, :, :], "Key_" + str(i))
            draw(3, value[0, i, :, :], "Value_" + str(i))
        '''
        # 2) Apply attention on all the projected vectors in batch. 
        x, self.attn = attention(query, key, value, mask=mask, 
                                 dropout=self.dropout)
        '''
        print("MultiHeadedAttention3:", x.shape, self.attn.shape)
        for i in range(self.h):
            draw(3, self.attn[0, i, :, :], "Atten map_" + str(i))
            draw(3, x[0, i, :, :], "X_" + str(i))
        '''
        # 3) "Concat" using a view and apply a final linear. 
        x = x.transpose(1, 2).contiguous() \
             .view(nbatches, -1, self.h * self.d_k)
        '''        
        print("MultiHeadedAttention4:", x.shape, self.linears[-1])
        draw(3, x[0, :, :], "Concat")

        temp = self.linears[-1](x)
        print("MultiHeadedAttention5:", temp.shape)
        draw(3, temp[0, :, :], "Linear Proj")
        '''
        return self.linears[-1](x)


# ---------------------Position-wise Feed-Forward Networks--------------------
class PositionwiseFeedForward(nn.Module):
    "Implements FFN equation."
    def __init__(self, d_model, d_ff, dropout=0.1):
        super(PositionwiseFeedForward, self).__init__()
        self.w_1 = nn.Linear(d_model, d_ff)
        self.w_2 = nn.Linear(d_ff, d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        '''
        temp = self.w_1(x)
        print("PositionwiseFeedForward1:", temp.shape)
        draw(3, temp[0, :, :], "w_1")
        temp = F.relu(self.w_1(x))
        print("PositionwiseFeedForward2:", temp.shape)
        draw(3, temp[0, :, :], "w_1_relu")
        temp = self.dropout(F.relu(self.w_1(x)))
        print("PositionwiseFeedForward3:", temp.shape)
        draw(3, temp[0, :, :], "dropout")
        temp = self.w_2(self.dropout(F.relu(self.w_1(x))))
        print("PositionwiseFeedForward4:", temp.shape)
        draw(3, temp[0, :, :], "w_2")
        '''
        return self.w_2(self.dropout(F.relu(self.w_1(x))))

# ---------------------Embeddings--------------------
class Embeddings(nn.Module):
    def __init__(self, d_model, vocab):
        super(Embeddings, self).__init__()
        self.lut = nn.Embedding(vocab, d_model)
        self.d_model = d_model

    def forward(self, x):
        #a = self.lut(x)
        #print("Embeddings:", a.shape)
        return self.lut(x) * math.sqrt(self.d_model)

# ---------------------ExpandConv--------------------
class ExpandConv(nn.Module):
    def __init__(self, d_model, vocab):
        super(ExpandConv, self).__init__()
        self.lut = nn.Conv1d(in_channels=vocab, out_channels=d_model, kernel_size=1)
        self.d_model = d_model

    def forward(self, x):
        #print("ExpandConv:", x.shape)
        convoluted_x = self.lut(x)
        convoluted_x = convoluted_x.permute(0, 2, 1)
        return convoluted_x * math.sqrt(self.d_model)
        
# ---------------------Positional Encoding--------------------
class PositionalEncoding(nn.Module):
    "Implement the PE function."
    def __init__(self, d_model, dropout, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)
        
        # Compute the positional encodings once in log space.
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len).unsqueeze(1)
        # scaling term that decreases exponentially as the depth (i.e., column index in pe) increases.
        div_term = torch.exp(torch.arange(0, d_model, 2) *
                             -(math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)
        self.register_buffer('pe', pe)
        
    def forward(self, x):
        x = x + Variable(self.pe[:, :x.size(1)], 
                         requires_grad=False)
        return self.dropout(x)


def make_model(src_vocab, tgt_vocab, N=6,
               d_model=128, d_ff=2048, h=8, dropout=0.1):
    "Helper: Construct a model from hyperparameters."
    c = copy.deepcopy
    attn = MultiHeadedAttention(h, d_model)
    ff = PositionwiseFeedForward(d_model, d_ff, dropout)
    position = PositionalEncoding(d_model, dropout)
    model = EncoderDecoder(
        Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N),
        Decoder(DecoderLayer(d_model, c(attn), c(attn),
                             c(ff), dropout), N),
        #nn.Sequential(Embeddings(d_model, src_vocab), c(position)),
        #nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)),
        nn.Sequential(ExpandConv(d_model, src_vocab), c(position)),
        nn.Sequential(ExpandConv(d_model, tgt_vocab), c(position)),
        Generator(d_model, tgt_vocab))

    # This was important from their code.
    # Initialize parameters with Glorot / fan_avg.
    for p in model.parameters():
        if p.dim() > 1:
            nn.init.xavier_uniform(p)
    return model

#tmp_model = make_model(10, 10, 2)
#print("all pass", tmp_model)