roseDwayane's picture
model
c58daf7
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import math, copy
from torch.autograd import Variable
# ---------------------Encoder and Decoder Stacks--------------------
class EncoderDecoder(nn.Module):
"""
A standard Encoder-Decoder architecture. Base for this and many
other models.
"""
def __init__(self, encoder, decoder, src_embed, tgt_embed, generator):
super(EncoderDecoder, self).__init__()
self.encoder = encoder
self.decoder = decoder
self.src_embed = src_embed
self.tgt_embed = tgt_embed
self.generator = generator
def forward(self, src, tgt, src_mask, tgt_mask):
"Take in and process masked src and target sequences."
return self.decode(self.encode(src, src_mask), src_mask,
tgt, tgt_mask)
def encode(self, src, src_mask):
#print("encode1:", src.shape)
#temp = self.src_embed(src)
#print("encode2:", temp.shape)
return self.encoder(self.src_embed(src), src_mask)
def decode(self, memory, src_mask, tgt, tgt_mask):
#print("decode1:", memory.shape)
#print("decode2:", src_mask.shape)
#print("decode3:", tgt.shape)
#print("decode4:", tgt_mask.shape)
#temp = self.tgt_embed(tgt)
#print("decode5:", temp.shape)
return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)
class Generator(nn.Module):
"Define standard linear + softmax generation step."
def __init__(self, d_model, vocab):
super(Generator, self).__init__()
self.proj = nn.Linear(d_model, vocab)
def forward(self, x):
'''
temp = self.proj(x)
print("Generator1:", temp.shape)
draw(3, temp[0, :, :], "Gen(lp)_" + str(2))
temp = F.log_softmax(self.proj(x), dim=-1)
print("Generator2:", temp.shape)
draw(3, temp[0, :, :], "Gen(sm)_" + str(3))
'''
#return F.log_softmax(self.proj(x), dim=-1)
return self.proj(x)
# ---------------------Encoder--------------------
def clones(module, N):
"Produce N identical layers."
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
class Encoder(nn.Module):
"Core encoder is a stack of N layers"
def __init__(self, layer, N):
super(Encoder, self).__init__()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)
def forward(self, x, mask):
"Pass the input (and mask) through each layer in turn."
for layer in self.layers:
x = layer(x, mask)
return self.norm(x)
class LayerNorm(nn.Module):
"Construct a layernorm module (See citation for details)."
def __init__(self, features, eps=1e-6):
super(LayerNorm, self).__init__()
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
class SublayerConnection(nn.Module):
"""
A residual connection followed by a layer norm.
Note for code simplicity the norm is first as opposed to last.
"""
def __init__(self, size, dropout):
super(SublayerConnection, self).__init__()
self.norm = LayerNorm(size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, sublayer):
"Apply residual connection to any sublayer with the same size."
return x + self.dropout(sublayer(self.norm(x)))
class EncoderLayer(nn.Module):
"Encoder is made up of self-attn and feed forward (defined below)"
def __init__(self, size, self_attn, feed_forward, dropout):
super(EncoderLayer, self).__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.sublayer = clones(SublayerConnection(size, dropout), 2)
self.size = size
def forward(self, x, mask):
"Follow Figure 1 (left) for connections."
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
#print("EncoderLayer2: ", x.shape)
return self.sublayer[1](x, self.feed_forward)
# ---------------------Decoder--------------------
class Decoder(nn.Module):
"Generic N layer decoder with masking."
def __init__(self, layer, N):
super(Decoder, self).__init__()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)
def forward(self, x, memory, src_mask, tgt_mask):
for layer in self.layers:
x = layer(x, memory, src_mask, tgt_mask)
return self.norm(x)
class DecoderLayer(nn.Module):
"Decoder is made of self-attn, src-attn, and feed forward (defined below)"
def __init__(self, size, self_attn, src_attn, feed_forward, dropout):
super(DecoderLayer, self).__init__()
self.size = size
self.self_attn = self_attn
self.src_attn = src_attn
self.feed_forward = feed_forward
self.sublayer = clones(SublayerConnection(size, dropout), 3)
def forward(self, x, memory, src_mask, tgt_mask):
"Follow Figure 1 (right) for connections."
m = memory
#print("DecoderLayer1:", x.shape)
#print("DecoderLayer2:", memory.shape)
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask))
#print("DecoderLayer3:", src_mask.shape)
#print("DecoderLayer4:", tgt_mask.shape)
x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask))
#print("DecoderLayer5:", tgt_mask.shape)
x = self.sublayer[2](x, self.feed_forward)
#print("DecoderLayer6:", tgt_mask.shape)
#time.sleep(5)
return x
def subsequent_mask(size):
"Mask out subsequent positions."
attn_shape = (1, size, size)
subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
return torch.from_numpy(subsequent_mask) == 0
#---------------------Attention--------------------
def attention(query, key, value, mask=None, dropout=None):
"Compute 'Scaled Dot Product Attention'"
#print("attention1:", query.shape, key.transpose(-2, -1).shape, value.shape, mask.shape)
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) \
/ math.sqrt(d_k)
#print("attention2:", d_k, scores.shape)
#draw(3, scores[0, 0, :, :], "scores_" + str(1))
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
#draw(3, scores[0, 0, :, :], "scores_" + str(2))
p_attn = F.softmax(scores, dim = -1)
#draw(3, p_attn[0, 0, :, :], "scores_" + str(3))
if dropout is not None:
p_attn = dropout(p_attn)
#draw(3, p_attn[0, 0, :, :], "scores_" + str(4))
return torch.matmul(p_attn, value), p_attn
class MultiHeadedAttention(nn.Module):
def __init__(self, h, d_model, dropout=0.1):
"Take in model size and number of heads."
super(MultiHeadedAttention, self).__init__()
assert d_model % h == 0
# We assume d_v always equals d_k
self.d_k = d_model // h
self.h = h
self.linears = clones(nn.Linear(d_model, d_model), 4)
self.attn = None
self.dropout = nn.Dropout(p=dropout)
def forward(self, query, key, value, mask=None):
if mask is not None:
# Same mask applied to all h heads.
mask = mask.unsqueeze(1)
nbatches = query.size(0)
#print("MultiHeadedAttention1:", query.shape, key.shape, value.shape, mask.shape)
# 1) Do all the linear projections in batch from d_model => h x d_k
query, key, value = \
[l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
for l, x in zip(self.linears, (query, key, value))]
'''
print("MultiHeadedAttention2:", query.shape, key.shape, value.shape)
for i in range(self.h):
draw(3, query[0,i,:,:], "Query_"+str(i))
draw(3, key[0, i, :, :], "Key_" + str(i))
draw(3, value[0, i, :, :], "Value_" + str(i))
'''
# 2) Apply attention on all the projected vectors in batch.
x, self.attn = attention(query, key, value, mask=mask,
dropout=self.dropout)
'''
print("MultiHeadedAttention3:", x.shape, self.attn.shape)
for i in range(self.h):
draw(3, self.attn[0, i, :, :], "Atten map_" + str(i))
draw(3, x[0, i, :, :], "X_" + str(i))
'''
# 3) "Concat" using a view and apply a final linear.
x = x.transpose(1, 2).contiguous() \
.view(nbatches, -1, self.h * self.d_k)
'''
print("MultiHeadedAttention4:", x.shape, self.linears[-1])
draw(3, x[0, :, :], "Concat")
temp = self.linears[-1](x)
print("MultiHeadedAttention5:", temp.shape)
draw(3, temp[0, :, :], "Linear Proj")
'''
return self.linears[-1](x)
# ---------------------Position-wise Feed-Forward Networks--------------------
class PositionwiseFeedForward(nn.Module):
"Implements FFN equation."
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
'''
temp = self.w_1(x)
print("PositionwiseFeedForward1:", temp.shape)
draw(3, temp[0, :, :], "w_1")
temp = F.relu(self.w_1(x))
print("PositionwiseFeedForward2:", temp.shape)
draw(3, temp[0, :, :], "w_1_relu")
temp = self.dropout(F.relu(self.w_1(x)))
print("PositionwiseFeedForward3:", temp.shape)
draw(3, temp[0, :, :], "dropout")
temp = self.w_2(self.dropout(F.relu(self.w_1(x))))
print("PositionwiseFeedForward4:", temp.shape)
draw(3, temp[0, :, :], "w_2")
'''
return self.w_2(self.dropout(F.relu(self.w_1(x))))
# ---------------------Embeddings--------------------
class Embeddings(nn.Module):
def __init__(self, d_model, vocab):
super(Embeddings, self).__init__()
self.lut = nn.Embedding(vocab, d_model)
self.d_model = d_model
def forward(self, x):
#a = self.lut(x)
#print("Embeddings:", a.shape)
return self.lut(x) * math.sqrt(self.d_model)
# ---------------------ExpandConv--------------------
class ExpandConv(nn.Module):
def __init__(self, d_model, vocab):
super(ExpandConv, self).__init__()
self.lut = nn.Conv1d(in_channels=vocab, out_channels=d_model, kernel_size=1)
self.d_model = d_model
def forward(self, x):
#print("ExpandConv:", x.shape)
convoluted_x = self.lut(x)
convoluted_x = convoluted_x.permute(0, 2, 1)
return convoluted_x * math.sqrt(self.d_model)
# ---------------------Positional Encoding--------------------
class PositionalEncoding(nn.Module):
"Implement the PE function."
def __init__(self, d_model, dropout, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
# Compute the positional encodings once in log space.
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1)
# scaling term that decreases exponentially as the depth (i.e., column index in pe) increases.
div_term = torch.exp(torch.arange(0, d_model, 2) *
-(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + Variable(self.pe[:, :x.size(1)],
requires_grad=False)
return self.dropout(x)
def make_model(src_vocab, tgt_vocab, N=6,
d_model=128, d_ff=2048, h=8, dropout=0.1):
"Helper: Construct a model from hyperparameters."
c = copy.deepcopy
attn = MultiHeadedAttention(h, d_model)
ff = PositionwiseFeedForward(d_model, d_ff, dropout)
position = PositionalEncoding(d_model, dropout)
model = EncoderDecoder(
Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N),
Decoder(DecoderLayer(d_model, c(attn), c(attn),
c(ff), dropout), N),
#nn.Sequential(Embeddings(d_model, src_vocab), c(position)),
#nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)),
nn.Sequential(ExpandConv(d_model, src_vocab), c(position)),
nn.Sequential(ExpandConv(d_model, tgt_vocab), c(position)),
Generator(d_model, tgt_vocab))
# This was important from their code.
# Initialize parameters with Glorot / fan_avg.
for p in model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform(p)
return model
#tmp_model = make_model(10, 10, 2)
#print("all pass", tmp_model)