Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import math, copy | |
from torch.autograd import Variable | |
# ---------------------Encoder and Decoder Stacks-------------------- | |
class EncoderDecoder(nn.Module): | |
""" | |
A standard Encoder-Decoder architecture. Base for this and many | |
other models. | |
""" | |
def __init__(self, encoder, decoder, src_embed, tgt_embed, generator): | |
super(EncoderDecoder, self).__init__() | |
self.encoder = encoder | |
self.decoder = decoder | |
self.src_embed = src_embed | |
self.tgt_embed = tgt_embed | |
self.generator = generator | |
def forward(self, src, tgt, src_mask, tgt_mask): | |
"Take in and process masked src and target sequences." | |
return self.decode(self.encode(src, src_mask), src_mask, | |
tgt, tgt_mask) | |
def encode(self, src, src_mask): | |
#print("encode1:", src.shape) | |
#temp = self.src_embed(src) | |
#print("encode2:", temp.shape) | |
return self.encoder(self.src_embed(src), src_mask) | |
def decode(self, memory, src_mask, tgt, tgt_mask): | |
#print("decode1:", memory.shape) | |
#print("decode2:", src_mask.shape) | |
#print("decode3:", tgt.shape) | |
#print("decode4:", tgt_mask.shape) | |
#temp = self.tgt_embed(tgt) | |
#print("decode5:", temp.shape) | |
return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask) | |
class Generator(nn.Module): | |
"Define standard linear + softmax generation step." | |
def __init__(self, d_model, vocab): | |
super(Generator, self).__init__() | |
self.proj = nn.Linear(d_model, vocab) | |
def forward(self, x): | |
''' | |
temp = self.proj(x) | |
print("Generator1:", temp.shape) | |
draw(3, temp[0, :, :], "Gen(lp)_" + str(2)) | |
temp = F.log_softmax(self.proj(x), dim=-1) | |
print("Generator2:", temp.shape) | |
draw(3, temp[0, :, :], "Gen(sm)_" + str(3)) | |
''' | |
#return F.log_softmax(self.proj(x), dim=-1) | |
return self.proj(x) | |
# ---------------------Encoder-------------------- | |
def clones(module, N): | |
"Produce N identical layers." | |
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)]) | |
class Encoder(nn.Module): | |
"Core encoder is a stack of N layers" | |
def __init__(self, layer, N): | |
super(Encoder, self).__init__() | |
self.layers = clones(layer, N) | |
self.norm = LayerNorm(layer.size) | |
def forward(self, x, mask): | |
"Pass the input (and mask) through each layer in turn." | |
for layer in self.layers: | |
x = layer(x, mask) | |
return self.norm(x) | |
class LayerNorm(nn.Module): | |
"Construct a layernorm module (See citation for details)." | |
def __init__(self, features, eps=1e-6): | |
super(LayerNorm, self).__init__() | |
self.a_2 = nn.Parameter(torch.ones(features)) | |
self.b_2 = nn.Parameter(torch.zeros(features)) | |
self.eps = eps | |
def forward(self, x): | |
mean = x.mean(-1, keepdim=True) | |
std = x.std(-1, keepdim=True) | |
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2 | |
class SublayerConnection(nn.Module): | |
""" | |
A residual connection followed by a layer norm. | |
Note for code simplicity the norm is first as opposed to last. | |
""" | |
def __init__(self, size, dropout): | |
super(SublayerConnection, self).__init__() | |
self.norm = LayerNorm(size) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x, sublayer): | |
"Apply residual connection to any sublayer with the same size." | |
return x + self.dropout(sublayer(self.norm(x))) | |
class EncoderLayer(nn.Module): | |
"Encoder is made up of self-attn and feed forward (defined below)" | |
def __init__(self, size, self_attn, feed_forward, dropout): | |
super(EncoderLayer, self).__init__() | |
self.self_attn = self_attn | |
self.feed_forward = feed_forward | |
self.sublayer = clones(SublayerConnection(size, dropout), 2) | |
self.size = size | |
def forward(self, x, mask): | |
"Follow Figure 1 (left) for connections." | |
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask)) | |
#print("EncoderLayer2: ", x.shape) | |
return self.sublayer[1](x, self.feed_forward) | |
# ---------------------Decoder-------------------- | |
class Decoder(nn.Module): | |
"Generic N layer decoder with masking." | |
def __init__(self, layer, N): | |
super(Decoder, self).__init__() | |
self.layers = clones(layer, N) | |
self.norm = LayerNorm(layer.size) | |
def forward(self, x, memory, src_mask, tgt_mask): | |
for layer in self.layers: | |
x = layer(x, memory, src_mask, tgt_mask) | |
return self.norm(x) | |
class DecoderLayer(nn.Module): | |
"Decoder is made of self-attn, src-attn, and feed forward (defined below)" | |
def __init__(self, size, self_attn, src_attn, feed_forward, dropout): | |
super(DecoderLayer, self).__init__() | |
self.size = size | |
self.self_attn = self_attn | |
self.src_attn = src_attn | |
self.feed_forward = feed_forward | |
self.sublayer = clones(SublayerConnection(size, dropout), 3) | |
def forward(self, x, memory, src_mask, tgt_mask): | |
"Follow Figure 1 (right) for connections." | |
m = memory | |
#print("DecoderLayer1:", x.shape) | |
#print("DecoderLayer2:", memory.shape) | |
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask)) | |
#print("DecoderLayer3:", src_mask.shape) | |
#print("DecoderLayer4:", tgt_mask.shape) | |
x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask)) | |
#print("DecoderLayer5:", tgt_mask.shape) | |
x = self.sublayer[2](x, self.feed_forward) | |
#print("DecoderLayer6:", tgt_mask.shape) | |
#time.sleep(5) | |
return x | |
def subsequent_mask(size): | |
"Mask out subsequent positions." | |
attn_shape = (1, size, size) | |
subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8') | |
return torch.from_numpy(subsequent_mask) == 0 | |
#---------------------Attention-------------------- | |
def attention(query, key, value, mask=None, dropout=None): | |
"Compute 'Scaled Dot Product Attention'" | |
#print("attention1:", query.shape, key.transpose(-2, -1).shape, value.shape, mask.shape) | |
d_k = query.size(-1) | |
scores = torch.matmul(query, key.transpose(-2, -1)) \ | |
/ math.sqrt(d_k) | |
#print("attention2:", d_k, scores.shape) | |
#draw(3, scores[0, 0, :, :], "scores_" + str(1)) | |
if mask is not None: | |
scores = scores.masked_fill(mask == 0, -1e9) | |
#draw(3, scores[0, 0, :, :], "scores_" + str(2)) | |
p_attn = F.softmax(scores, dim = -1) | |
#draw(3, p_attn[0, 0, :, :], "scores_" + str(3)) | |
if dropout is not None: | |
p_attn = dropout(p_attn) | |
#draw(3, p_attn[0, 0, :, :], "scores_" + str(4)) | |
return torch.matmul(p_attn, value), p_attn | |
class MultiHeadedAttention(nn.Module): | |
def __init__(self, h, d_model, dropout=0.1): | |
"Take in model size and number of heads." | |
super(MultiHeadedAttention, self).__init__() | |
assert d_model % h == 0 | |
# We assume d_v always equals d_k | |
self.d_k = d_model // h | |
self.h = h | |
self.linears = clones(nn.Linear(d_model, d_model), 4) | |
self.attn = None | |
self.dropout = nn.Dropout(p=dropout) | |
def forward(self, query, key, value, mask=None): | |
if mask is not None: | |
# Same mask applied to all h heads. | |
mask = mask.unsqueeze(1) | |
nbatches = query.size(0) | |
#print("MultiHeadedAttention1:", query.shape, key.shape, value.shape, mask.shape) | |
# 1) Do all the linear projections in batch from d_model => h x d_k | |
query, key, value = \ | |
[l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2) | |
for l, x in zip(self.linears, (query, key, value))] | |
''' | |
print("MultiHeadedAttention2:", query.shape, key.shape, value.shape) | |
for i in range(self.h): | |
draw(3, query[0,i,:,:], "Query_"+str(i)) | |
draw(3, key[0, i, :, :], "Key_" + str(i)) | |
draw(3, value[0, i, :, :], "Value_" + str(i)) | |
''' | |
# 2) Apply attention on all the projected vectors in batch. | |
x, self.attn = attention(query, key, value, mask=mask, | |
dropout=self.dropout) | |
''' | |
print("MultiHeadedAttention3:", x.shape, self.attn.shape) | |
for i in range(self.h): | |
draw(3, self.attn[0, i, :, :], "Atten map_" + str(i)) | |
draw(3, x[0, i, :, :], "X_" + str(i)) | |
''' | |
# 3) "Concat" using a view and apply a final linear. | |
x = x.transpose(1, 2).contiguous() \ | |
.view(nbatches, -1, self.h * self.d_k) | |
''' | |
print("MultiHeadedAttention4:", x.shape, self.linears[-1]) | |
draw(3, x[0, :, :], "Concat") | |
temp = self.linears[-1](x) | |
print("MultiHeadedAttention5:", temp.shape) | |
draw(3, temp[0, :, :], "Linear Proj") | |
''' | |
return self.linears[-1](x) | |
# ---------------------Position-wise Feed-Forward Networks-------------------- | |
class PositionwiseFeedForward(nn.Module): | |
"Implements FFN equation." | |
def __init__(self, d_model, d_ff, dropout=0.1): | |
super(PositionwiseFeedForward, self).__init__() | |
self.w_1 = nn.Linear(d_model, d_ff) | |
self.w_2 = nn.Linear(d_ff, d_model) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
''' | |
temp = self.w_1(x) | |
print("PositionwiseFeedForward1:", temp.shape) | |
draw(3, temp[0, :, :], "w_1") | |
temp = F.relu(self.w_1(x)) | |
print("PositionwiseFeedForward2:", temp.shape) | |
draw(3, temp[0, :, :], "w_1_relu") | |
temp = self.dropout(F.relu(self.w_1(x))) | |
print("PositionwiseFeedForward3:", temp.shape) | |
draw(3, temp[0, :, :], "dropout") | |
temp = self.w_2(self.dropout(F.relu(self.w_1(x)))) | |
print("PositionwiseFeedForward4:", temp.shape) | |
draw(3, temp[0, :, :], "w_2") | |
''' | |
return self.w_2(self.dropout(F.relu(self.w_1(x)))) | |
# ---------------------Embeddings-------------------- | |
class Embeddings(nn.Module): | |
def __init__(self, d_model, vocab): | |
super(Embeddings, self).__init__() | |
self.lut = nn.Embedding(vocab, d_model) | |
self.d_model = d_model | |
def forward(self, x): | |
#a = self.lut(x) | |
#print("Embeddings:", a.shape) | |
return self.lut(x) * math.sqrt(self.d_model) | |
# ---------------------ExpandConv-------------------- | |
class ExpandConv(nn.Module): | |
def __init__(self, d_model, vocab): | |
super(ExpandConv, self).__init__() | |
self.lut = nn.Conv1d(in_channels=vocab, out_channels=d_model, kernel_size=1) | |
self.d_model = d_model | |
def forward(self, x): | |
#print("ExpandConv:", x.shape) | |
convoluted_x = self.lut(x) | |
convoluted_x = convoluted_x.permute(0, 2, 1) | |
return convoluted_x * math.sqrt(self.d_model) | |
# ---------------------Positional Encoding-------------------- | |
class PositionalEncoding(nn.Module): | |
"Implement the PE function." | |
def __init__(self, d_model, dropout, max_len=5000): | |
super(PositionalEncoding, self).__init__() | |
self.dropout = nn.Dropout(p=dropout) | |
# Compute the positional encodings once in log space. | |
pe = torch.zeros(max_len, d_model) | |
position = torch.arange(0, max_len).unsqueeze(1) | |
# scaling term that decreases exponentially as the depth (i.e., column index in pe) increases. | |
div_term = torch.exp(torch.arange(0, d_model, 2) * | |
-(math.log(10000.0) / d_model)) | |
pe[:, 0::2] = torch.sin(position * div_term) | |
pe[:, 1::2] = torch.cos(position * div_term) | |
pe = pe.unsqueeze(0) | |
self.register_buffer('pe', pe) | |
def forward(self, x): | |
x = x + Variable(self.pe[:, :x.size(1)], | |
requires_grad=False) | |
return self.dropout(x) | |
def make_model(src_vocab, tgt_vocab, N=6, | |
d_model=128, d_ff=2048, h=8, dropout=0.1): | |
"Helper: Construct a model from hyperparameters." | |
c = copy.deepcopy | |
attn = MultiHeadedAttention(h, d_model) | |
ff = PositionwiseFeedForward(d_model, d_ff, dropout) | |
position = PositionalEncoding(d_model, dropout) | |
model = EncoderDecoder( | |
Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N), | |
Decoder(DecoderLayer(d_model, c(attn), c(attn), | |
c(ff), dropout), N), | |
#nn.Sequential(Embeddings(d_model, src_vocab), c(position)), | |
#nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)), | |
nn.Sequential(ExpandConv(d_model, src_vocab), c(position)), | |
nn.Sequential(ExpandConv(d_model, tgt_vocab), c(position)), | |
Generator(d_model, tgt_vocab)) | |
# This was important from their code. | |
# Initialize parameters with Glorot / fan_avg. | |
for p in model.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform(p) | |
return model | |
#tmp_model = make_model(10, 10, 2) | |
#print("all pass", tmp_model) | |