# https://github.com/milesial/Pytorch-UNet """ Full assembly of the parts to form the complete network """ import torch import torch.nn as nn import torch.nn.functional as F class DoubleConv(nn.Module): """(convolution => [BN] => ReLU) * 2""" def __init__(self, in_channels, out_channels,kernel_size=7): super().__init__() padding = int((kernel_size - 1) / 2) self.double_conv = nn.Sequential( nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, padding=padding), nn.BatchNorm1d(out_channels), nn.Sigmoid(), #nn.ReLU(inplace=True), nn.Conv1d(out_channels, out_channels, kernel_size=kernel_size, padding=padding), nn.BatchNorm1d(out_channels), #nn.ReLU(inplace=True) nn.Sigmoid() ) def forward(self, x): return self.double_conv(x) class Down(nn.Module): """Downscaling with maxpool then double conv""" def __init__(self, in_channels, out_channels, kernel_size): super().__init__() self.maxpool_conv = nn.Sequential( nn.MaxPool1d(2), DoubleConv(in_channels, out_channels,kernel_size) ) def forward(self, x): return self.maxpool_conv(x) class Up(nn.Module): """Upscaling then double conv""" def __init__(self, in_channels, out_channels, kernel_size, bilinear=True): super().__init__() # if bilinear, use the normal convolutions to reduce the number of channels if bilinear: # self.up = F.interpolate() self.up = nn.Upsample(scale_factor=2, mode='linear', align_corners=False) else: self.up = nn.ConvTranspose1d(in_channels // 2, in_channels // 2, kernel_size=2, stride=2) self.conv = DoubleConv(in_channels, out_channels, kernel_size) def forward(self, x1, x2): x = self.up(x1) # input is CHW #diffY = torch.tensor([x2.size()[2] - x1.size()[2]]) #diffX = torch.tensor([x2.size()[3] - x1.size()[3]]) #x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, # diffY // 2, diffY - diffY // 2]) # if you have padding issues, see # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a # https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd #x = torch.cat([x2, x1], dim=1) return self.conv(x) class OutConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size): super(OutConv, self).__init__() padding = int((kernel_size - 1) / 2) self.conv = nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, padding=padding, bias=True) def forward(self, x): return self.conv(x) class UNet0(nn.Module): def __init__(self, n_channels, n_classes, bilinear=True): super(UNet0, self).__init__() self.n_channels = n_channels self.n_classes = n_classes self.bilinear = bilinear self.inc = DoubleConv(n_channels, 64, kernel_size=7) self.down1 = Down(64, 128, kernel_size=7) self.down2 = Down(128, 256,kernel_size=5) #self.down3 = Down(256, 512,kernel_size=3) #self.up1 = Up(512, 256, kernel_size=3) self.up2 = Up(256, 128, kernel_size=3) self.up3 = Up(128, 64, kernel_size=3) self.outc = OutConv(64, n_classes,kernel_size=1) def forward(self, x): x1 = self.inc(x) x2 = self.down1(x1) x3 = self.down2(x2) #x4 = self.down3(x3) #x = self.up1(x4, x3) x = self.up2(x3, x2) x = self.up3(x, x1) logits = self.outc(x) return logits class UNet1(nn.Module): def __init__(self, n_channels, n_classes, bilinear=True): super(UNet1, self).__init__() self.n_channels = n_channels self.n_classes = n_classes self.bilinear = bilinear self.inc = DoubleConv(n_channels, 64, kernel_size=7) self.down1 = Down(64, 128, kernel_size=7) self.down2 = Down(128, 256,kernel_size=5) self.down3 = Down(256, 512,kernel_size=3) self.up1 = Up(512, 256, kernel_size=3) self.up2 = Up(256, 128, kernel_size=3) self.up3 = Up(128, 64, kernel_size=3) self.outc = OutConv(64, n_classes,kernel_size=1) def forward(self, x): x1 = self.inc(x) x2 = self.down1(x1) x3 = self.down2(x2) x4 = self.down3(x3) x = self.up1(x4, x3) x = self.up2(x, x2) x = self.up3(x, x1) logits = self.outc(x) return logits class UNet2(nn.Module): def __init__(self, n_channels, n_classes, bilinear=True): super(UNet2, self).__init__() self.n_channels = n_channels self.n_classes = n_classes self.bilinear = bilinear self.inc = DoubleConv(n_channels, 64, kernel_size=7) self.down1 = Down(64, 128, kernel_size=7) self.down2 = Down(128, 256,kernel_size=5) self.down3 = Down(256, 512,kernel_size=3) self.down4 = Down(512, 1024, kernel_size=3) self.up = Up(1024, 512, kernel_size=3) self.up1 = Up(512, 256, kernel_size=3) self.up2 = Up(256, 128, kernel_size=3) self.up3 = Up(128, 64, kernel_size=3) self.outc = OutConv(64, n_classes,kernel_size=1) def forward(self, x): x1 = self.inc(x) x2 = self.down1(x1) x3 = self.down2(x2) x4 = self.down3(x3) x5 = self.down4(x4) x = self.up(x5, x4) x = self.up1(x, x3) x = self.up2(x, x2) x = self.up3(x, x1) logits = self.outc(x) return logits