File size: 16,896 Bytes
a2b6394
 
661701a
 
 
a2b6394
 
 
 
d68c05c
c2e1968
484188b
a2b6394
 
1cfab55
 
 
 
 
 
 
 
 
24ab55a
 
 
 
 
 
 
 
 
4a16f32
 
 
 
 
 
 
 
 
 
 
24ab55a
 
f4a515a
24ab55a
 
 
 
 
 
 
88d1ada
24ab55a
 
 
 
 
 
c70f2a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24ab55a
 
8d22502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2b6394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d68c05c
a2b6394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68ff3fc
 
 
 
a2b6394
68ff3fc
a2b6394
 
 
68ff3fc
a2b6394
 
68ff3fc
 
 
 
 
 
 
 
 
 
 
a2b6394
68ff3fc
 
a2b6394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96a03d1
d43254f
96a03d1
 
 
d68c05c
 
96a03d1
 
 
 
 
 
 
a2b6394
 
 
 
 
 
 
 
 
 
 
 
 
 
661701a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2b6394
 
 
 
 
 
 
 
661701a
a2b6394
 
 
 
 
 
 
d68c05c
a2b6394
 
 
 
 
c2e1968
 
 
 
 
 
 
bd5d7e4
 
479d899
c2e1968
b2b5472
479d899
 
 
 
 
 
 
 
 
 
 
 
 
bd5d7e4
 
b2b5472
484188b
 
5f8cc60
484188b
e66cb9a
5f8cc60
484188b
e66cb9a
bd5d7e4
c6fe8ae
 
 
 
 
 
 
cf605c5
bd5d7e4
c2e1968
9f1436c
f70bc66
479d899
 
9f1436c
 
c2e1968
 
479d899
c6fe8ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd254f9
c6fe8ae
 
 
 
b2b5472
 
c6fe8ae
 
 
 
 
 
bd5d7e4
 
c6fe8ae
c2e1968
bd5d7e4
 
c6fe8ae
 
 
bd5d7e4
 
 
484188b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6fe8ae
 
 
a2b6394
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
# -*- coding: utf-8 -*-

# author: Martin Fajčík
# modified by: Jan Doležal

import csv
import random
import numpy as np
from bokeh.plotting import figure
from bokeh.models import LabelSet, LogScale, ColumnDataSource, tickers
from bokeh.models import LinearColorMapper, HoverTool
from bokeh.models import CustomJS
from bokeh.palettes import Turbo256  # A color palette with enough colors

def bokeh2html(obj):
    from bokeh.embed import components
    from bokeh.resources import CDN
    
    script, div = components(obj, CDN)
    bokeh_html = f"{CDN.render()}\n{div}\n{script}"
    
    return bokeh_html

def bokeh2fullhtml(obj):
    from bokeh.embed import components
    from bokeh.resources import CDN
    
    script, div = components(obj, CDN)
    bokeh_html = f"""<!DOCTYPE html>
<html lang="en">
<head>
  {CDN.render()}
  <style>
    .spinner {{
      padding-top: 50px;
      padding-left: 50px;
      position: absolute;
      font-size: 20px;
    }}
    @keyframes blink {{
      0%,100% {{opacity:1;}} 50% {{opacity:0.3;}}
    }}
  </style>
</head>
<body>
  <div id="spinner" class="spinner">⌛ Loading...</div>
  {div}
  {script}
</body>
</html>"""
    
    return bokeh_html

def bokeh2iframe(obj, height=820):
    import html
    
    srcdoc = bokeh2fullhtml(obj)
    srcdoc = html.escape(srcdoc)
    
    return f'''
        <div
            style="
                width: 100%;
                height: {height}px;
                resize: vertical;
                overflow: hidden;
                border: 1px solid var(--border-color-primary);
                border-radius: var(--block-radius);
            "
        >
            <iframe
                srcdoc="{srcdoc}"
                style="
                    width: 100%;
                    height: 100%;
                "
            ></iframe>
        </div>
    '''

def bokeh2json(obj):
    from bokeh.document import Document
    
    doc = Document()
    doc.add_root(obj)
    json_str = doc.to_json()
    
    return json_str

def json2bokeh(json_str):
    from bokeh.document import Document
    
    doc = Document.from_json(json_str)
    obj = doc.roots[0]
    
    return obj

def bokeh_copy(obj):
    json_str = bokeh2json(obj)
    obj_copy = json2bokeh(json_str)
    return obj_copy

# Function to fit a polynomial curve and return the x and y values of the fitted curve
def fit_curve(x, y, degree=1):
    # Fit a polynomial of given degree
    coeffs = np.polyfit(x, y, degree)
    poly = np.poly1d(coeffs)
    x_fit = np.linspace(min(x), max(x), 100)
    y_fit = poly(x_fit)
    return x_fit, y_fit

# Function to detect and remove outliers using the IQR method
def remove_outliers(x, y):
    x = np.array(x)
    y = np.array(y)
    
    # Calculate Q1 (25th percentile) and Q3 (75th percentile)
    Q1_x, Q3_x = np.percentile(x, [25, 75])
    Q1_y, Q3_y = np.percentile(y, [25, 75])
    
    IQR_x = Q3_x - Q1_x
    IQR_y = Q3_y - Q1_y
    
    # Define bounds for outliers
    lower_bound_x = Q1_x - 1.5 * IQR_x
    upper_bound_x = Q3_x + 1.5 * IQR_x
    lower_bound_y = Q1_y - 1.5 * IQR_y
    upper_bound_y = Q3_y + 1.5 * IQR_y
    
    # Filter out outliers
    mask_x = (x >= lower_bound_x) & (x <= upper_bound_x)
    mask_y = (y >= lower_bound_y) & (y <= upper_bound_y)
    mask = mask_x & mask_y
    
    return x[mask], y[mask], x[~mask], y[~mask]

def get_ldb_records(name_map, csv_file_path):
    model_mapping = {model_title: model_title for model_title in name_map.values()}
    
    ldb_records={}
    with open(csv_file_path, mode='r') as file:
        reader = csv.DictReader(file)
        for row in reader:
            sanitized_name = model_mapping[row['Model']]
            ldb_records[sanitized_name] = row
    
    return ldb_records

def create_scatter_plot_with_curve_with_variances_named(category, variance_across_categories, x, y, sizes, model_names, ldb_records):
    FONTSIZE = 12
    
    # Remove outliers
    x_filtered, y_filtered, x_outliers, y_outliers = remove_outliers(x, y)

    # Scale the variance to a range suitable for marker sizes (e.g., between 5 and 30)
    min_marker_size = 5
    max_marker_size = 30

    def scale_variance_to_size(variance):
        # Scale variance to marker size (linear mapping)
        return min_marker_size + (variance - min(variance_across_categories.values())) * (max_marker_size - min_marker_size) / (max(variance_across_categories.values()) - min(variance_across_categories.values()))

    # Function to get the variance for a given model name
    def get_variance_for_model(model_name):
        return variance_across_categories.get(model_name, 0)  # Default to 0 if model not found

    # Get markers
    filtered_markers = np.array(model_names)[np.in1d(x, x_filtered)]
    outlier_markers = np.array(model_names)[np.in1d(x, x_outliers)]

    # Get marker sizes and variances for the filtered data
    filtered_variances = [get_variance_for_model(mname) for mname in filtered_markers]
    marker_sizes_filtered = [scale_variance_to_size(var) for var in filtered_variances]
    
    # Get marker sizes and variances for the outlier data
    outlier_variances = [get_variance_for_model(mname) for mname in outlier_markers]
    marker_sizes_outliers = [scale_variance_to_size(var) for var in outlier_variances]

    # Assign symbols to the model types
    # https://docs.bokeh.org/en/latest/docs/examples/basic/scatters/markers.html
    _model_type2symbol = {
        'chat': 'circle',
        'pretrained': 'triangle',
        'ensemble': 'star',
    }
    model_type2symbol = lambda model_type: _model_type2symbol.get(model_type, 'diamond')
    
    # Assign symbols to the filtered data points
    filtered_symbols = [model_type2symbol(ldb_records[mname]['Type']) for mname in filtered_markers]
    
    # Assign symbols to the outlier data points
    outlier_symbols = [model_type2symbol(ldb_records[mname]['Type']) for mname in outlier_markers]
    
    # Define a color palette with enough colors
    stride = len(Turbo256) // len(model_names)
    color_palette = list(Turbo256[::stride])  # Adjust this palette size based on the number of data points
    random.shuffle(color_palette)
    
    # Create unique colors for filtered data
    filtered_colors = [color_palette[i % len(color_palette)] for i in range(len(x_filtered))]
    
    # Create unique colors for outliers
    outlier_colors = [color_palette[(i + len(x_filtered)) % len(color_palette)] for i in range(len(x_outliers))]

    # Create ColumnDataSource with filtered data
    source_filtered = ColumnDataSource(data={
        'x': x_filtered,
        'y': y_filtered,
        'sizes': np.array(sizes)[np.in1d(x, x_filtered)],  # Keep original model sizes
        'marker_sizes': marker_sizes_filtered,  # New field for marker sizes based on variance
        'model_names': np.array(model_names)[np.in1d(x, x_filtered)],
        'variance': filtered_variances,  # New field for variance
        'color': filtered_colors,
        'symbol': filtered_symbols
    })
    
    # Create ColumnDataSource with outlier data
    source_outliers = ColumnDataSource(data={
        'x': x_outliers,
        'y': y_outliers,
        'sizes': np.array(sizes)[np.in1d(x, x_outliers)],  # Keep original model sizes
        'marker_sizes': marker_sizes_outliers,  # New field for marker sizes based on variance
        'model_names': np.array(model_names)[np.in1d(x, x_outliers)],
        'variance': outlier_variances,  # New field for variance
        'color': outlier_colors,
        'symbol': outlier_symbols
    })

    # Create a figure for the category
    p = figure(
        output_backend="svg",
        sizing_mode="stretch_width",
        height=800,
        #title=f"{category} vs Model Size vs Variance Across Categories",
        tools="pan,wheel_zoom,box_zoom,save,reset",
        active_scroll="wheel_zoom",
        tooltips=[
            ("Model", "@model_names"), 
            ("Model Size (B parameters)", "@sizes"), 
            ("Variance", "@variance"),  # Added variance to the tooltip
            ("Performance", "@y"),
        ]
    )

    # Plot filtered data with unique colors and scaled marker sizes
    p.scatter('x', 'y', size='marker_sizes', source=source_filtered, fill_alpha=0.6, color='color', marker='symbol')

    # Plot outliers with unique colors and scaled marker sizes
    p.scatter('x', 'y', size='marker_sizes', source=source_outliers, fill_alpha=0.6, color='color', marker='symbol')

    # Fit and plot a curve
    x_fit, y_fit = fit_curve(x_filtered, y_filtered, degree=1)  # You can adjust the degree of the polynomial   

    
    p.line(x_fit, y_fit, line_color='gray', line_width=2, line_dash='dashed')

    # Add labels (with slight offset to avoid overlap)
    p.add_layout(LabelSet(
        x='x',
        y='y',
        text='model_names',
        source=source_filtered,
        x_offset=5,
        y_offset=8,
        text_font_size=f"{FONTSIZE-2}pt",
        text_color='black',
    ))
    
    p.add_layout(LabelSet(
        x='x',
        y='y',
        text='model_names',
        source=source_outliers,
        x_offset=5,
        y_offset=8,
        text_font_size=f"{FONTSIZE-2}pt",
        text_color='black',
    ))


    # Set axis labels
    p.xaxis.axis_label = 'Model Size (B parameters)'
    p.yaxis.axis_label = f'{category}'

    # Set axis label font sizes
    p.xaxis.axis_label_text_font_size = f"{FONTSIZE}pt"  # Set font size for x-axis label
    p.yaxis.axis_label_text_font_size = f"{FONTSIZE}pt"  # Set font size for y-axis label

    # Increase tick label font sizes
    p.xaxis.major_label_text_font_size = f"{FONTSIZE}pt"  # Increase x-axis tick label size
    p.yaxis.major_label_text_font_size = f"{FONTSIZE}pt"  # Increase y-axis tick label size

    p.x_scale = LogScale()
    
    p.xaxis.ticker = tickers.LogTicker()
    p.xaxis.axis_label_text_font_style = "normal"
    p.yaxis.axis_label_text_font_style = "normal"
    
    return p

def create_heatmap(data_matrix, original_scores,
    selected_rows=None, 
    hide_scores_tasks=[], 
    plot_width=None, 
    plot_height=None, 
    x_axis_label="Model", 
    y_axis_label="Task", 
    x_axis_visible=True, 
    y_axis_visible=True, 
    transpose=False, 
):
    FONTSIZE = 9

    if transpose:
        data_matrix = data_matrix.T
        original_scores = original_scores.T
        x_axis_label, y_axis_label = y_axis_label, x_axis_label
        x_axis_visible, y_axis_visible = y_axis_visible, x_axis_visible
        toolbar_location = "right"
        x_axis_location = "above"
        y_range=list(reversed(data_matrix.columns))
    else:
        toolbar_location = "below"
        x_axis_location = "below"
        y_range=list(data_matrix.columns)
    
    n_rows, n_cols = data_matrix.shape
    cell_size = 22
    plot_inner_width = None
    plot_inner_height = None
    if plot_width == None:
        plot_inner_width  = n_rows * cell_size
        plot_width = plot_inner_width + 500
    if plot_height == None:
        plot_inner_height = n_cols * cell_size
        plot_height = plot_inner_height + 500

    if selected_rows is not None:
        # Select only the specified rows (models)
        data_matrix = data_matrix[selected_rows]
        original_scores = original_scores[selected_rows]

    # Set up the figure with tasks as x-axis and models as y-axis
    p = figure(
        output_backend="svg",
        sizing_mode="fixed",
        width=plot_width,
        height=plot_height,
        x_range=list(data_matrix.index),
        y_range=y_range,
        toolbar_location=toolbar_location,
        tools="pan,wheel_zoom,box_zoom,reset,save",
        active_drag=None,
        x_axis_label=x_axis_label,
        y_axis_label=y_axis_label,
        x_axis_location=x_axis_location,
    )

    # Create the color mapper for the heatmap
    color_mapper = LinearColorMapper(palette='Viridis256', low=0, high=1)  # Light for low values, dark for high

    # Flatten the matrix for Bokeh plotting
    heatmap_data = {
        'x': [],
        'y': [],
        'colors': [],
        'model_names': [],  # Updated: Reflects model names now
        'scores': [],
    }
    label_data = {
        'x': [],
        'y': [],
        'value': [],
        'text_color': [],  # New field for label text colors
    }
    
    # Iterate through the data_matrix to populate heatmap and label data
    for row_idx, (model_name, task_scores) in enumerate(data_matrix.iterrows()):
        for col_idx, score in enumerate(task_scores):
            heatmap_data['x'].append(model_name)  # Model goes to x-axis
            heatmap_data['y'].append(data_matrix.columns[col_idx])  # Task goes to y-axis
            heatmap_data['colors'].append(score)
            heatmap_data['model_names'].append(model_name)  # Model names added to hover info

            # Get the original score
            original_score = original_scores.loc[model_name, data_matrix.columns[col_idx]]
            plot_score = data_matrix.loc[model_name, data_matrix.columns[col_idx]]
            heatmap_data['scores'].append(original_score)
            task_name = data_matrix.columns[col_idx]

            if task_name not in hide_scores_tasks:
                label_data['x'].append(model_name)
                label_data['y'].append(task_name)
                label_data['value'].append(round(original_score))  # Round the score

                # Determine text color based on score
                if plot_score <= 0.6:  # Threshold for light/dark text
                    label_data['text_color'].append('white')  # Light color for lower scores
                else:
                    label_data['text_color'].append('black')  # Dark color for higher scores

    heatmap_source = ColumnDataSource(heatmap_data)
    label_source = ColumnDataSource(label_data)

    # Create the heatmap
    p.rect(x='x', y='y', width=1, height=1, source=heatmap_source,
           line_color=None, fill_color={'field': 'colors', 'transform': color_mapper})

    # Add HoverTool for interactivity
    hover = HoverTool()
    hover.tooltips = [(x_axis_label, "@x"), (y_axis_label, "@y"), ("DWS", "@scores")]  # Updated tooltip
    p.add_tools(hover)

    # Add labels with dynamic text color
    labels = LabelSet(x='x', y='y', text='value', source=label_source,
                      text_color='text_color', text_align='center', text_baseline='middle',
                      text_font_size=f"{FONTSIZE}pt")
    p.add_layout(labels)

    # Customize the plot appearance
    p.xgrid.grid_line_color = None
    p.ygrid.grid_line_color = None
    p.xaxis.major_label_orientation = "vertical"
    p.yaxis.major_label_text_font_size = f"{FONTSIZE}pt"
    p.xaxis.major_label_text_font_size = f"{FONTSIZE}pt"

    # Set the axis label font size
    p.xaxis.axis_label_text_font_size = f"{FONTSIZE + 5}pt"  # Set font size for x-axis label
    p.yaxis.axis_label_text_font_size = f"{FONTSIZE + 5}pt"  # Set font size for y-axis label
    p.xaxis.axis_label_text_font_style = "normal"  # Set x-axis label to normal
    p.yaxis.axis_label_text_font_style = "normal"  # Set y-axis label to normal
    
    # Hide the axis labels
    p.xaxis.visible = x_axis_visible
    p.yaxis.visible = y_axis_visible
    
    # Fix inner size
    if plot_inner_width != None:
        p.js_on_change('inner_width', CustomJS(args=dict(p=p, target=plot_inner_width), code="""
            // current inner width of the plot area
            const iw = p.inner_width;
            // calculate the margin between full width and inner plot area
            const margin = p.width - iw;
            // adjust total width so that inner width matches the desired target
            p.width = target + margin;
            
            // remove only this callback from the inner_width callbacks array
            const cbs = p.js_property_callbacks.inner_width;
            for (let i = 0; i < cbs.length; i++) {
                if (cbs[i] === this) {
                    cbs.splice(i, 1);
                    break;
                }
            }
        """))
    if plot_inner_height != None:
        p.js_on_change('inner_height', CustomJS(args=dict(p=p, target=plot_inner_height), code="""
            // current inner height of the plot area
            const ih = p.inner_height;
            // calculate the margin between full height and inner plot area
            const margin = p.height - ih;
            // adjust total height so that inner height matches the desired target
            p.height = target + margin;
            
            // remove only this callback from the inner_height callbacks array
            const cbs = p.js_property_callbacks.inner_height;
            for (let i = 0; i < cbs.length; i++) {
                if (cbs[i] === this) {
                    cbs.splice(i, 1);
                    break;
                }
            }
        """))

    return p

# EOF