CZerion's picture
Create inference/inference.py
6f80c37 verified
raw
history blame contribute delete
544 Bytes
from transformers import pipeline
def load_disease_pipeline(model_id):
return pipeline(
task="image-classification",
model=model_id,
top_k=3
)
def diagnose(image, pipe):
results = pipe(image)
preds = [f"{r['label']} ({r['score']*100:.1f}%)" for r in results]
advice = (
"No disease detected—maintain standard crop care."
if "healthy" in results[0]['label'].lower()
else f"Disease detected: {results[0]['label']}. Apply targeted treatment."
)
return preds, advice