Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,10 +9,9 @@ DEVICE = 0 if torch.cuda.is_available() else -1
|
|
9 |
TORCH_DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
|
10 |
|
11 |
# Modelo A: Falcon RW 1B
|
12 |
-
model_a = AutoModelForCausalLM.from_pretrained(
|
13 |
-
"tiiuae/falcon-rw-1b", torch_dtype=TORCH_DTYPE
|
14 |
-
)
|
15 |
tokenizer_a = AutoTokenizer.from_pretrained("tiiuae/falcon-rw-1b")
|
|
|
16 |
pipe_a = pipeline(
|
17 |
"text-generation",
|
18 |
model=model_a,
|
@@ -22,6 +21,7 @@ pipe_a = pipeline(
|
|
22 |
pad_token_id=tokenizer_a.eos_token_id
|
23 |
)
|
24 |
|
|
|
25 |
model_b = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1", torch_dtype=TORCH_DTYPE)
|
26 |
tokenizer_b = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
|
27 |
|
@@ -34,7 +34,7 @@ pipe_b = pipeline(
|
|
34 |
pad_token_id=tokenizer_b.eos_token_id
|
35 |
)
|
36 |
|
37 |
-
#
|
38 |
sentiment_arbiter = pipeline(
|
39 |
"text-classification",
|
40 |
model="nlptown/bert-base-multilingual-uncased-sentiment",
|
@@ -48,35 +48,40 @@ similarity_model = SentenceTransformer(
|
|
48 |
)
|
49 |
|
50 |
def semantic_similarity(text1, text2):
|
|
|
|
|
51 |
embeddings = similarity_model.encode([text1, text2], convert_to_tensor=True)
|
52 |
cosine_scores = util.pytorch_cos_sim(embeddings[0], embeddings[1])
|
53 |
return cosine_scores.item()
|
54 |
|
|
|
|
|
|
|
55 |
def judge_response(question, response_a, response_b):
|
56 |
sentiment_a = sentiment_arbiter(response_a)[0]
|
57 |
sentiment_b = sentiment_arbiter(response_b)[0]
|
58 |
-
|
59 |
score_sent_a = int(sentiment_a['label'][0])
|
60 |
score_sent_b = int(sentiment_b['label'][0])
|
61 |
-
|
62 |
sim_score_a = semantic_similarity(question, response_a)
|
63 |
sim_score_b = semantic_similarity(question, response_b)
|
64 |
-
|
65 |
-
conciseness_a = min(1.0, 50 / len(response_a.split()))
|
66 |
-
conciseness_b = min(1.0, 50 / len(response_b.split()))
|
67 |
-
|
68 |
WEIGHT_SENTIMENT = 0.4
|
69 |
WEIGHT_RELEVANCE = 0.5
|
70 |
WEIGHT_CONCISENESS = 0.1
|
71 |
-
|
72 |
total_a = (WEIGHT_SENTIMENT * score_sent_a +
|
73 |
WEIGHT_RELEVANCE * sim_score_a +
|
74 |
WEIGHT_CONCISENESS * conciseness_a)
|
75 |
-
|
76 |
total_b = (WEIGHT_SENTIMENT * score_sent_b +
|
77 |
WEIGHT_RELEVANCE * sim_score_b +
|
78 |
WEIGHT_CONCISENESS * conciseness_b)
|
79 |
-
|
80 |
THRESHOLD = 0.15
|
81 |
if abs(total_a - total_b) < THRESHOLD:
|
82 |
winner = "Modelo A" if score_sent_a >= score_sent_b else "Modelo B"
|
@@ -84,16 +89,17 @@ def judge_response(question, response_a, response_b):
|
|
84 |
else:
|
85 |
winner = "Modelo A" if total_a > total_b else "Modelo B"
|
86 |
final_response = response_a if total_a > total_b else response_b
|
87 |
-
|
88 |
print(f"\nA: S:{score_sent_a:.2f} R:{sim_score_a:.2f} C:{conciseness_a:.2f} T:{total_a:.2f}")
|
89 |
print(f"B: S:{score_sent_b:.2f} R:{sim_score_b:.2f} C:{conciseness_b:.2f} T:{total_b:.2f}")
|
90 |
print(f"Vencedor: {winner} Diferença: {abs(total_a - total_b):.2f}")
|
91 |
-
|
92 |
return winner, final_response
|
93 |
|
94 |
def chatbot(prompt):
|
95 |
prompt_pt = "Responda em português: " + prompt
|
96 |
-
|
|
|
97 |
response_a = pipe_a(
|
98 |
prompt_pt,
|
99 |
max_new_tokens=60,
|
@@ -102,18 +108,17 @@ def chatbot(prompt):
|
|
102 |
top_p=0.9,
|
103 |
repetition_penalty=1.2,
|
104 |
)[0]['generated_text'].strip()
|
105 |
-
|
106 |
response_b = pipe_b(
|
107 |
-
|
108 |
max_new_tokens=60,
|
109 |
temperature=0.7,
|
110 |
top_k=50,
|
111 |
top_p=0.9,
|
112 |
repetition_penalty=1.2,
|
113 |
)[0]['generated_text'].strip()
|
114 |
-
|
115 |
winner, final_response = judge_response(prompt, response_a, response_b)
|
116 |
-
|
117 |
return prompt, response_a, response_b, winner, final_response
|
118 |
|
119 |
css = """
|
@@ -124,29 +129,29 @@ footer {visibility: hidden}
|
|
124 |
with gr.Blocks(css=css) as demo:
|
125 |
gr.Markdown("# 🤖 Chatbot com Julgamento Aprimorado")
|
126 |
gr.Markdown("Compara respostas de dois modelos usando múltiplos critérios de qualidade")
|
127 |
-
|
128 |
with gr.Row():
|
129 |
inp = gr.Textbox(label="Digite sua pergunta:", lines=2, placeholder="Escreva sua pergunta em português...")
|
130 |
btn = gr.Button("Enviar")
|
131 |
-
|
132 |
with gr.Row():
|
133 |
with gr.Column():
|
134 |
gr.Markdown("### Modelo A (Falcon RW 1B)")
|
135 |
out_a = gr.Textbox(label="Resposta", interactive=False)
|
136 |
with gr.Column():
|
137 |
-
gr.Markdown("### Modelo B (
|
138 |
out_b = gr.Textbox(label="Resposta", interactive=False)
|
139 |
-
|
140 |
with gr.Row():
|
141 |
with gr.Column(scale=2):
|
142 |
winner_out = gr.Textbox(label="🏆 Modelo Vencedor", interactive=False)
|
143 |
with gr.Column(scale=3):
|
144 |
final_out = gr.Textbox(label="💡 Resposta Escolhida", interactive=False)
|
145 |
-
|
146 |
btn.click(
|
147 |
fn=chatbot,
|
148 |
inputs=inp,
|
149 |
outputs=[inp, out_a, out_b, winner_out, final_out]
|
150 |
)
|
151 |
|
152 |
-
demo.launch()
|
|
|
9 |
TORCH_DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
|
10 |
|
11 |
# Modelo A: Falcon RW 1B
|
12 |
+
model_a = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-rw-1b", torch_dtype=TORCH_DTYPE)
|
|
|
|
|
13 |
tokenizer_a = AutoTokenizer.from_pretrained("tiiuae/falcon-rw-1b")
|
14 |
+
|
15 |
pipe_a = pipeline(
|
16 |
"text-generation",
|
17 |
model=model_a,
|
|
|
21 |
pad_token_id=tokenizer_a.eos_token_id
|
22 |
)
|
23 |
|
24 |
+
# Modelo B: Mistral 7B Instruct
|
25 |
model_b = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1", torch_dtype=TORCH_DTYPE)
|
26 |
tokenizer_b = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
|
27 |
|
|
|
34 |
pad_token_id=tokenizer_b.eos_token_id
|
35 |
)
|
36 |
|
37 |
+
# Classificador de sentimento
|
38 |
sentiment_arbiter = pipeline(
|
39 |
"text-classification",
|
40 |
model="nlptown/bert-base-multilingual-uncased-sentiment",
|
|
|
48 |
)
|
49 |
|
50 |
def semantic_similarity(text1, text2):
|
51 |
+
if not text1.strip() or not text2.strip():
|
52 |
+
return 0.0
|
53 |
embeddings = similarity_model.encode([text1, text2], convert_to_tensor=True)
|
54 |
cosine_scores = util.pytorch_cos_sim(embeddings[0], embeddings[1])
|
55 |
return cosine_scores.item()
|
56 |
|
57 |
+
def format_mistral_prompt(user_input):
|
58 |
+
return f"<s>[INST] {user_input.strip()} [/INST]"
|
59 |
+
|
60 |
def judge_response(question, response_a, response_b):
|
61 |
sentiment_a = sentiment_arbiter(response_a)[0]
|
62 |
sentiment_b = sentiment_arbiter(response_b)[0]
|
63 |
+
|
64 |
score_sent_a = int(sentiment_a['label'][0])
|
65 |
score_sent_b = int(sentiment_b['label'][0])
|
66 |
+
|
67 |
sim_score_a = semantic_similarity(question, response_a)
|
68 |
sim_score_b = semantic_similarity(question, response_b)
|
69 |
+
|
70 |
+
conciseness_a = min(1.0, 50 / max(1, len(response_a.split())))
|
71 |
+
conciseness_b = min(1.0, 50 / max(1, len(response_b.split())))
|
72 |
+
|
73 |
WEIGHT_SENTIMENT = 0.4
|
74 |
WEIGHT_RELEVANCE = 0.5
|
75 |
WEIGHT_CONCISENESS = 0.1
|
76 |
+
|
77 |
total_a = (WEIGHT_SENTIMENT * score_sent_a +
|
78 |
WEIGHT_RELEVANCE * sim_score_a +
|
79 |
WEIGHT_CONCISENESS * conciseness_a)
|
80 |
+
|
81 |
total_b = (WEIGHT_SENTIMENT * score_sent_b +
|
82 |
WEIGHT_RELEVANCE * sim_score_b +
|
83 |
WEIGHT_CONCISENESS * conciseness_b)
|
84 |
+
|
85 |
THRESHOLD = 0.15
|
86 |
if abs(total_a - total_b) < THRESHOLD:
|
87 |
winner = "Modelo A" if score_sent_a >= score_sent_b else "Modelo B"
|
|
|
89 |
else:
|
90 |
winner = "Modelo A" if total_a > total_b else "Modelo B"
|
91 |
final_response = response_a if total_a > total_b else response_b
|
92 |
+
|
93 |
print(f"\nA: S:{score_sent_a:.2f} R:{sim_score_a:.2f} C:{conciseness_a:.2f} T:{total_a:.2f}")
|
94 |
print(f"B: S:{score_sent_b:.2f} R:{sim_score_b:.2f} C:{conciseness_b:.2f} T:{total_b:.2f}")
|
95 |
print(f"Vencedor: {winner} Diferença: {abs(total_a - total_b):.2f}")
|
96 |
+
|
97 |
return winner, final_response
|
98 |
|
99 |
def chatbot(prompt):
|
100 |
prompt_pt = "Responda em português: " + prompt
|
101 |
+
mistral_prompt = format_mistral_prompt(prompt_pt)
|
102 |
+
|
103 |
response_a = pipe_a(
|
104 |
prompt_pt,
|
105 |
max_new_tokens=60,
|
|
|
108 |
top_p=0.9,
|
109 |
repetition_penalty=1.2,
|
110 |
)[0]['generated_text'].strip()
|
111 |
+
|
112 |
response_b = pipe_b(
|
113 |
+
mistral_prompt,
|
114 |
max_new_tokens=60,
|
115 |
temperature=0.7,
|
116 |
top_k=50,
|
117 |
top_p=0.9,
|
118 |
repetition_penalty=1.2,
|
119 |
)[0]['generated_text'].strip()
|
120 |
+
|
121 |
winner, final_response = judge_response(prompt, response_a, response_b)
|
|
|
122 |
return prompt, response_a, response_b, winner, final_response
|
123 |
|
124 |
css = """
|
|
|
129 |
with gr.Blocks(css=css) as demo:
|
130 |
gr.Markdown("# 🤖 Chatbot com Julgamento Aprimorado")
|
131 |
gr.Markdown("Compara respostas de dois modelos usando múltiplos critérios de qualidade")
|
132 |
+
|
133 |
with gr.Row():
|
134 |
inp = gr.Textbox(label="Digite sua pergunta:", lines=2, placeholder="Escreva sua pergunta em português...")
|
135 |
btn = gr.Button("Enviar")
|
136 |
+
|
137 |
with gr.Row():
|
138 |
with gr.Column():
|
139 |
gr.Markdown("### Modelo A (Falcon RW 1B)")
|
140 |
out_a = gr.Textbox(label="Resposta", interactive=False)
|
141 |
with gr.Column():
|
142 |
+
gr.Markdown("### Modelo B (Mistral 7B Instruct)")
|
143 |
out_b = gr.Textbox(label="Resposta", interactive=False)
|
144 |
+
|
145 |
with gr.Row():
|
146 |
with gr.Column(scale=2):
|
147 |
winner_out = gr.Textbox(label="🏆 Modelo Vencedor", interactive=False)
|
148 |
with gr.Column(scale=3):
|
149 |
final_out = gr.Textbox(label="💡 Resposta Escolhida", interactive=False)
|
150 |
+
|
151 |
btn.click(
|
152 |
fn=chatbot,
|
153 |
inputs=inp,
|
154 |
outputs=[inp, out_a, out_b, winner_out, final_out]
|
155 |
)
|
156 |
|
157 |
+
demo.launch()
|