Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,58 +1,75 @@
|
|
1 |
import torch
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
-
#
|
5 |
DEVICE = 0 if torch.cuda.is_available() else -1
|
6 |
TORCH_DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
"
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
)
|
29 |
-
tokenizer_b = AutoTokenizer.from_pretrained("OpenAssistant/oasst-sft-1-pythia-12b")
|
30 |
-
|
31 |
-
pipe_b = pipeline(
|
32 |
-
"text-generation",
|
33 |
-
model=model_b,
|
34 |
-
tokenizer=tokenizer_b,
|
35 |
-
device=DEVICE,
|
36 |
-
return_full_text=False,
|
37 |
-
pad_token_id=tokenizer_b.eos_token_id
|
38 |
-
)
|
39 |
|
40 |
# Interface de prompt
|
41 |
def format_prompt(user_input):
|
42 |
-
return f"Responda
|
43 |
|
44 |
if __name__ == "__main__":
|
|
|
|
|
45 |
while True:
|
46 |
prompt = input("\nDigite uma pergunta (ou 'sair'): ").strip()
|
47 |
if prompt.lower() == "sair":
|
48 |
break
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
+
# Configura莽玫es de mem贸ria
|
5 |
DEVICE = 0 if torch.cuda.is_available() else -1
|
6 |
TORCH_DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
|
7 |
|
8 |
+
# Modelos otimizados para 16GB
|
9 |
+
MODEL_CONFIG = {
|
10 |
+
"Modelo A": {
|
11 |
+
"name": "pierreguillain/gpt2-small-portuguese",
|
12 |
+
"max_tokens": 150
|
13 |
+
},
|
14 |
+
"Modelo B": {
|
15 |
+
"name": "pierreguillain/gpt-neo-125m-portuguese",
|
16 |
+
"max_tokens": 150
|
17 |
+
}
|
18 |
+
}
|
19 |
|
20 |
+
# Carrega apenas um modelo por vez
|
21 |
+
def load_model(model_name):
|
22 |
+
config = MODEL_CONFIG[model_name]
|
23 |
+
model = AutoModelForCausalLM.from_pretrained(
|
24 |
+
config["name"],
|
25 |
+
torch_dtype=TORCH_DTYPE,
|
26 |
+
low_cpu_mem_usage=True # Reduz consumo de mem贸ria
|
27 |
+
)
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(config["name"])
|
29 |
+
pipe = pipeline(
|
30 |
+
"text-generation",
|
31 |
+
model=model,
|
32 |
+
tokenizer=tokenizer,
|
33 |
+
device=DEVICE,
|
34 |
+
return_full_text=False,
|
35 |
+
pad_token_id=tokenizer.eos_token_id
|
36 |
+
)
|
37 |
+
return pipe, config["max_tokens"]
|
38 |
|
39 |
+
# Libera mem贸ria explicitamente
|
40 |
+
def unload_model(pipe):
|
41 |
+
del pipe
|
42 |
+
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
# Interface de prompt
|
45 |
def format_prompt(user_input):
|
46 |
+
return f"Responda de forma clara e concisa: {user_input.strip()}"
|
47 |
|
48 |
if __name__ == "__main__":
|
49 |
+
print("Sistema otimizado para 16GB de RAM\n")
|
50 |
+
|
51 |
while True:
|
52 |
prompt = input("\nDigite uma pergunta (ou 'sair'): ").strip()
|
53 |
if prompt.lower() == "sair":
|
54 |
break
|
55 |
|
56 |
+
# Processa um modelo por vez
|
57 |
+
for model_name in MODEL_CONFIG:
|
58 |
+
try:
|
59 |
+
print(f"\n=== Carregando {model_name} ===")
|
60 |
+
pipe, max_tokens = load_model(model_name)
|
61 |
+
|
62 |
+
print(f"\n=== Resposta do {model_name} ===")
|
63 |
+
response = pipe(
|
64 |
+
format_prompt(prompt),
|
65 |
+
max_new_tokens=max_tokens,
|
66 |
+
temperature=0.7,
|
67 |
+
top_p=0.9
|
68 |
+
)[0]['generated_text'].strip()
|
69 |
+
|
70 |
+
print(response)
|
71 |
+
unload_model(pipe)
|
72 |
+
|
73 |
+
except Exception as e:
|
74 |
+
print(f"Erro no {model_name}: {str(e)}")
|
75 |
+
unload_model(pipe)
|