File size: 9,075 Bytes
4583098
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"""

    Gradio demo for text customization with Calligrapher (the reference is uploaded by the user).



"""

import gradio as gr
import numpy as np
from datetime import datetime
import torch
from PIL import Image

import spaces
from huggingface_hub import snapshot_download
from pipeline_calligrapher import CalligrapherPipeline
from models.calligrapher import Calligrapher
from models.transformer_flux_inpainting import FluxTransformer2DModel
from utils import process_gradio_source, get_bbox_from_mask, crop_image_from_bb, \
                  resize_img_and_pad, generate_context_reference_image


# Function of loading pre-trained models.
def load_models():
    snapshot_download(
                repo_id="Calligrapher2025/Calligrapher",
                allow_patterns="calligrapher.bin",
                local_dir="./",
                )
    print("calligrapher.bin successfully downloaded!")
    transformer = FluxTransformer2DModel.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", 
                                                         subfolder="transformer",
                                                         torch_dtype=torch.bfloat16)
    pipe = CalligrapherPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", 
                                                transformer=transformer,
                                                torch_dtype=torch.bfloat16).to("cuda")
    model = Calligrapher(pipe, 
                         image_encoder_path="google/siglip-so400m-patch14-384", 
                         calligrapher_path="calligrapher.bin", 
                         device="cuda", num_tokens=128)
    return model


# Init models.
model = load_models()
print('Model loaded!')


@spaces.GPU()
def process_and_generate(editor_component, reference_image, prompt, height, width,

                         scale, steps=50, seed=42, use_context=True, num_images=1):
    print('Begin processing!')
    # Get source, mask, and cropped images from gr.ImageEditor.
    source_image, mask_image, cropped_image = process_gradio_source(editor_component)

    # Resize source and mask.
    source_image = source_image.resize((width, height))
    mask_image = mask_image.resize((width, height), Image.NEAREST)
    mask_np = np.array(mask_image)
    mask_np[mask_np > 0] = 255
    mask_image = Image.fromarray(mask_np.astype(np.uint8))

    if reference_image is None:
        # If self-inpaint (no input ref): (1) get bounding box from the mask and (2) perform cropping to get the ref image.
        tl, br = get_bbox_from_mask(mask_image)
        # Convert irregularly shaped masks into rectangles.
        reference_image = crop_image_from_bb(source_image, tl, br)
    # Raw reference image before resizing.
    reference_image_to_encoder = resize_img_and_pad(reference_image, target_size=(512, 512))
    
    if use_context:
        reference_context = generate_context_reference_image(reference_image, width)
        # Concat the context on the top of the input masked image in the pixel space.
        source_with_context = Image.new(source_image.mode, (width, reference_context.size[1] + height))
        source_with_context.paste(reference_context, (0, 0))
        source_with_context.paste(source_image, (0, reference_context.size[1]))
        # Concat the zero mask on the top of the mask image.
        mask_with_context = Image.new(mask_image.mode,
                                      (mask_image.size[0], 
                                       reference_context.size[1] + mask_image.size[0]), 
                                       color=0)
        mask_with_context.paste(mask_image, (0, reference_context.size[1]))

        source_image = source_with_context
        mask_image = mask_with_context

    all_generated_images = []
    for i in range(num_images):
        res = model.generate(
            image=source_image,
            mask_image=mask_image,
            ref_image=reference_image_to_encoder,
            prompt=prompt,
            scale=scale,
            num_inference_steps=steps,
            width=source_image.size[0],
            height=source_image.size[1],
            seed=seed + i,
        )[0]
        if use_context:
            res_vis = res.crop((0, reference_context.size[1], res.width, res.height))  # remove context
            mask_vis = mask_image.crop(
                (0, reference_context.size[1], mask_image.width, mask_image.height))  # remove context mask
        else:
            res_vis = res
            mask_vis = mask_image
        all_generated_images.append((res_vis, f"Generating {i + 1} (Seed: {seed + i})"))

    return mask_vis, reference_image_to_encoder, all_generated_images


# Main gradio codes.
with gr.Blocks(theme="default", css=".image-editor img {max-width: 70%; height: 70%;}") as demo:
    gr.Markdown(
        """

        # ๐Ÿ–Œ๏ธ Calligrapher: Freestyle Text Image Customization    [[Code]](https://github.com/Calligrapher2025/Calligrapher) [[Project Page]](https://calligrapher2025.github.io/Calligrapher/)

        ### Consider giving a star to the [project](https://github.com/Calligrapher2025/Calligrapher) if you find it useful!

        """
    )

    with gr.Row():
        with gr.Column(scale=3):
            gr.Markdown("### ๐ŸŽจ Image Editing Panel")
            editor_component = gr.ImageEditor(
                label="Upload or Draw",
                type="pil",
                brush=gr.Brush(colors=["#FFFFFF"], default_size=30, color_mode="fixed"),
                layers=True,
                interactive=True,
            )

            gr.Markdown("### ๐Ÿ“ค Output Result")
            gallery = gr.Gallery(label="๐Ÿ–ผ๏ธ Result Gallery")
            gr.Markdown(
                """<br>

                

                 ### โœจUser Tips:

                 

                 1. **Speed vs Quality Trade-off.** Use fewer steps (e.g., 10-step which takes ~4s/image on a single A6000 GPU) for faster generation, but quality may be lower.

                

                 2. **Inpaint Position Freedom.**  Inpainting positions are flexible - they don't necessarily need to match the original text locations in the input image.

                 

                 3. **Iterative Editing.** Drag outputs from the gallery to the Image Editing Panel (clean the Editing Panel first) for quick refinements.

                   

                 4. **Mask Optimization.** Adjust mask size/aspect ratio to match your desired content. The model tends to fill the masks, and harmonizes the generation with background in terms of color and lighting.

                

                 5. **Reference Image Tip.**  White-background references improve style consistency - the encoder also considers background context of the given reference image.

                

                 6. **Resolution Balance.** Very high-resolution generation sometimes triggers spelling errors. 512/768px are recommended considering the model is trained under the resolution of 512.

                """
            )
        with gr.Column(scale=1):
            gr.Markdown("### โš™๏ธSettings")
            reference_image = gr.Image(
                label="๐Ÿงฉ Reference Image  (skip this if self-reference)",
                sources=["upload"],
                type="pil",
            )
            prompt = gr.Textbox(
                label="๐Ÿ“ Prompt",
                placeholder="The text is 'Image'...",
                value="The text is 'Image'."
            )

            with gr.Accordion("๐Ÿ”ง Additional Settings", open=True):
                with gr.Row():
                    height = gr.Number(label="Height", value=512, precision=0)
                    width = gr.Number(label="Width", value=512, precision=0)
                scale = gr.Slider(0.0, 2.0, 1.0, step=0.1, value=1.0, label="๐ŸŽš๏ธ Strength")
                steps = gr.Slider(1, 100, 50, step=1, label="๐Ÿ” Steps")
                with gr.Row():
                    seed = gr.Number(label="๐ŸŽฒ Seed", value=56, precision=0)
                    use_context = gr.Checkbox(value=True, label="๐Ÿ” Use Context", interactive=True)
                num_images = gr.Slider(1, 16, 2, step=1, label="๐Ÿ–ผ๏ธ Sample Amount")

            run_btn = gr.Button("๐Ÿš€ Run", variant="primary")

            mask_output = gr.Image(label="๐ŸŸฉ Mask Demo")
            reference_demo = gr.Image(label="๐Ÿงฉ Reference Demo")

    # Run button event.
    run_btn.click(
        fn=process_and_generate,
        inputs=[
            editor_component,
            reference_image,
            prompt,
            height,
            width,
            scale,
            steps,
            seed,
            use_context,
            num_images
        ],
        outputs=[
            mask_output,
            reference_demo,
            gallery
        ]
    )

if __name__ == "__main__":
    demo.launch()