from PIL import Image import torch from transformers import AutoProcessor, SiglipVisionModel from models.projection_models import MLPProjModel, QFormerProjModel from models.attention_processor import FluxAttnProcessor class Calligrapher: def __init__(self, sd_pipe, image_encoder_path, calligrapher_path, device, num_tokens): self.device = device self.image_encoder_path = image_encoder_path self.calligrapher_path = calligrapher_path self.num_tokens = num_tokens self.pipe = sd_pipe.to(self.device) self.set_attn_adapter() self.image_encoder = SiglipVisionModel.from_pretrained(image_encoder_path).to(self.device, dtype=torch.bfloat16) self.clip_image_processor = AutoProcessor.from_pretrained(self.image_encoder_path) self.image_proj_mlp, self.image_proj_qformer = self.init_proj() self.load_models() def init_proj(self): image_proj_mlp = MLPProjModel( cross_attention_dim=self.pipe.transformer.config.joint_attention_dim, id_embeddings_dim=1152, num_tokens=self.num_tokens, ).to(self.device, dtype=torch.bfloat16) image_proj_qformer = QFormerProjModel( cross_attention_dim=4096, id_embeddings_dim=1152, num_tokens=self.num_tokens, num_heads=8, num_query_tokens=32 ).to(self.device, dtype=torch.bfloat16) return image_proj_mlp, image_proj_qformer def set_attn_adapter(self): transformer = self.pipe.transformer attn_procs = {} for name in transformer.attn_processors.keys(): if name.startswith("transformer_blocks.") or name.startswith("single_transformer_blocks"): attn_procs[name] = FluxAttnProcessor( hidden_size=transformer.config.num_attention_heads * transformer.config.attention_head_dim, cross_attention_dim=transformer.config.joint_attention_dim, num_tokens=self.num_tokens, ).to(self.device, dtype=torch.bfloat16) else: attn_procs[name] = transformer.attn_processors[name] transformer.set_attn_processor(attn_procs) def load_models(self): state_dict = torch.load(self.calligrapher_path, map_location="cpu") self.image_proj_mlp.load_state_dict(state_dict["image_proj_mlp"], strict=True) self.image_proj_qformer.load_state_dict(state_dict["image_proj_qformer"], strict=True) target_layers = torch.nn.ModuleList(self.pipe.transformer.attn_processors.values()) target_layers.load_state_dict(state_dict["attn_adapter"], strict=False) @torch.inference_mode() def get_image_embeds(self, pil_image=None, clip_image_embeds=None): if pil_image is not None: if isinstance(pil_image, Image.Image): pil_image = [pil_image] clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values clip_image_embeds = self.image_encoder( clip_image.to(self.device, dtype=self.image_encoder.dtype)).pooler_output clip_image_embeds = clip_image_embeds.to(dtype=torch.bfloat16) else: clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.bfloat16) image_prompt_embeds = self.image_proj_mlp(clip_image_embeds) \ + self.image_proj_qformer(clip_image_embeds) return image_prompt_embeds def set_scale(self, scale): for attn_processor in self.pipe.transformer.attn_processors.values(): if isinstance(attn_processor, FluxAttnProcessor): attn_processor.scale = scale def generate( self, image=None, mask_image=None, ref_image=None, clip_image_embeds=None, prompt=None, scale=1.0, seed=None, num_inference_steps=30, **kwargs, ): self.set_scale(scale) image_prompt_embeds = self.get_image_embeds( pil_image=ref_image, clip_image_embeds=clip_image_embeds ) if seed is None: generator = None else: generator = torch.Generator(self.device).manual_seed(seed) images = self.pipe( image=image, mask_image=mask_image, prompt=prompt, image_emb=image_prompt_embeds, num_inference_steps=num_inference_steps, generator=generator, **kwargs, ).images return images