camie-tagger-v2-game / utils /onnx_processing.py
Camais03's picture
Upload 7 files
31e20c4 verified
"""
ONNX-based batch image processing for the Image Tagger application.
Updated with proper ImageNet normalization and new metadata format.
"""
import os
import json
import time
import traceback
import numpy as np
import glob
import onnxruntime as ort
from PIL import Image
import torchvision.transforms as transforms
from concurrent.futures import ThreadPoolExecutor
def preprocess_image(image_path, image_size=512):
"""
Process an image for ImageTagger inference with proper ImageNet normalization
"""
if not os.path.exists(image_path):
raise ValueError(f"Image not found at path: {image_path}")
# ImageNet normalization - CRITICAL for your model
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
])
try:
with Image.open(image_path) as img:
# Convert RGBA or Palette images to RGB
if img.mode in ('RGBA', 'P'):
img = img.convert('RGB')
# Get original dimensions
width, height = img.size
aspect_ratio = width / height
# Calculate new dimensions to maintain aspect ratio
if aspect_ratio > 1:
new_width = image_size
new_height = int(new_width / aspect_ratio)
else:
new_height = image_size
new_width = int(new_height * aspect_ratio)
# Resize with LANCZOS filter
img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
# Create new image with padding (use ImageNet mean for padding)
# Using RGB values close to ImageNet mean: (0.485*255, 0.456*255, 0.406*255)
pad_color = (124, 116, 104)
new_image = Image.new('RGB', (image_size, image_size), pad_color)
paste_x = (image_size - new_width) // 2
paste_y = (image_size - new_height) // 2
new_image.paste(img, (paste_x, paste_y))
# Apply transforms (including ImageNet normalization)
img_tensor = transform(new_image)
return img_tensor.numpy()
except Exception as e:
raise Exception(f"Error processing {image_path}: {str(e)}")
def process_single_image_onnx(image_path, model_path, metadata, threshold_profile="Overall",
active_threshold=0.35, active_category_thresholds=None,
min_confidence=0.1):
"""
Process a single image using ONNX model with new metadata format
Args:
image_path: Path to the image file
model_path: Path to the ONNX model file
metadata: Model metadata dictionary
threshold_profile: The threshold profile being used
active_threshold: Overall threshold value
active_category_thresholds: Category-specific thresholds
min_confidence: Minimum confidence to include in results
Returns:
Dictionary with tags and probabilities
"""
try:
# Create ONNX tagger for this image (or reuse an existing one)
if hasattr(process_single_image_onnx, 'tagger'):
tagger = process_single_image_onnx.tagger
else:
# Create new tagger
tagger = ONNXImageTagger(model_path, metadata)
# Cache it for future calls
process_single_image_onnx.tagger = tagger
# Preprocess the image
start_time = time.time()
img_array = preprocess_image(image_path)
# Run inference
results = tagger.predict_batch(
[img_array],
threshold=active_threshold,
category_thresholds=active_category_thresholds,
min_confidence=min_confidence
)
inference_time = time.time() - start_time
if results:
result = results[0]
result['inference_time'] = inference_time
result['success'] = True
return result
else:
return {
'success': False,
'error': 'Failed to process image',
'all_tags': [],
'all_probs': {},
'tags': {}
}
except Exception as e:
print(f"Error in process_single_image_onnx: {str(e)}")
traceback.print_exc()
return {
'success': False,
'error': str(e),
'all_tags': [],
'all_probs': {},
'tags': {}
}
def preprocess_images_parallel(image_paths, image_size=512, max_workers=8):
"""Process multiple images in parallel"""
processed_images = []
valid_paths = []
# Define a worker function
def process_single_image(path):
try:
return preprocess_image(path, image_size), path
except Exception as e:
print(f"Error processing {path}: {str(e)}")
return None, path
# Process images in parallel
with ThreadPoolExecutor(max_workers=max_workers) as executor:
results = list(executor.map(process_single_image, image_paths))
# Filter results
for img_array, path in results:
if img_array is not None:
processed_images.append(img_array)
valid_paths.append(path)
return processed_images, valid_paths
def apply_category_limits(result, category_limits):
"""
Apply category limits to a result dictionary.
Args:
result: Result dictionary containing tags and all_tags
category_limits: Dictionary mapping categories to their tag limits
(0 = exclude category, -1 = no limit/include all)
Returns:
Updated result dictionary with limits applied
"""
if not category_limits or not result['success']:
return result
# Get the filtered tags
filtered_tags = result['tags']
# Apply limits to each category
for category, cat_tags in list(filtered_tags.items()):
# Get limit for this category, default to -1 (no limit)
limit = category_limits.get(category, -1)
if limit == 0:
# Exclude this category entirely
del filtered_tags[category]
elif limit > 0 and len(cat_tags) > limit:
# Limit to top N tags for this category
filtered_tags[category] = cat_tags[:limit]
# Regenerate all_tags list after applying limits
all_tags = []
for category, cat_tags in filtered_tags.items():
for tag, _ in cat_tags:
all_tags.append(tag)
# Update the result with limited tags
result['tags'] = filtered_tags
result['all_tags'] = all_tags
return result
class ONNXImageTagger:
"""ONNX-based image tagger for fast batch inference with updated metadata format"""
def __init__(self, model_path, metadata):
# Load model
self.model_path = model_path
try:
self.session = ort.InferenceSession(
model_path,
providers=['CUDAExecutionProvider', 'CPUExecutionProvider']
)
print(f"Using providers: {self.session.get_providers()}")
except Exception as e:
print(f"CUDA not available, using CPU: {e}")
self.session = ort.InferenceSession(
model_path,
providers=['CPUExecutionProvider']
)
print(f"Using providers: {self.session.get_providers()}")
# Store metadata (passed as dict, not loaded from file)
self.metadata = metadata
# Extract tag mappings from new metadata structure
if 'dataset_info' in metadata:
# New metadata format
self.tag_mapping = metadata['dataset_info']['tag_mapping']
self.idx_to_tag = self.tag_mapping['idx_to_tag']
self.tag_to_category = self.tag_mapping['tag_to_category']
self.total_tags = metadata['dataset_info']['total_tags']
else:
# Fallback for older format
self.idx_to_tag = metadata.get('idx_to_tag', {})
self.tag_to_category = metadata.get('tag_to_category', {})
self.total_tags = metadata.get('total_tags', len(self.idx_to_tag))
# Get input name
self.input_name = self.session.get_inputs()[0].name
print(f"Model loaded successfully. Input name: {self.input_name}")
print(f"Total tags: {self.total_tags}, Categories: {len(set(self.tag_to_category.values()))}")
def predict_batch(self, image_arrays, threshold=0.5, category_thresholds=None, min_confidence=0.1):
"""Run batch inference on preprocessed image arrays"""
# Stack arrays into batch
batch_input = np.stack(image_arrays)
# Run inference
start_time = time.time()
outputs = self.session.run(None, {self.input_name: batch_input})
inference_time = time.time() - start_time
print(f"Batch inference completed in {inference_time:.4f} seconds ({inference_time/len(image_arrays):.4f} s/image)")
# Process outputs - handle both single and multi-output models
if len(outputs) >= 2:
# Multi-output model (initial_predictions, refined_predictions, selected_candidates)
initial_logits = outputs[0]
refined_logits = outputs[1]
# Use refined predictions as main output
main_logits = refined_logits
print(f"Using refined predictions (shape: {refined_logits.shape})")
else:
# Single output model
main_logits = outputs[0]
print(f"Using single output (shape: {main_logits.shape})")
# Apply sigmoid to get probabilities
main_probs = 1.0 / (1.0 + np.exp(-main_logits))
# Process results for each image in batch
batch_results = []
for i in range(main_probs.shape[0]):
probs = main_probs[i]
# Extract and organize all probabilities
all_probs = {}
for idx in range(probs.shape[0]):
prob_value = float(probs[idx])
if prob_value >= min_confidence:
idx_str = str(idx)
tag_name = self.idx_to_tag.get(idx_str, f"unknown-{idx}")
category = self.tag_to_category.get(tag_name, "general")
if category not in all_probs:
all_probs[category] = []
all_probs[category].append((tag_name, prob_value))
# Sort tags by probability within each category
for category in all_probs:
all_probs[category] = sorted(
all_probs[category],
key=lambda x: x[1],
reverse=True
)
# Get the filtered tags based on the selected threshold
tags = {}
for category, cat_tags in all_probs.items():
# Use category-specific threshold if available
if category_thresholds and category in category_thresholds:
cat_threshold = category_thresholds[category]
else:
cat_threshold = threshold
tags[category] = [(tag, prob) for tag, prob in cat_tags if prob >= cat_threshold]
# Create a flat list of all tags above threshold
all_tags = []
for category, cat_tags in tags.items():
for tag, _ in cat_tags:
all_tags.append(tag)
batch_results.append({
'tags': tags,
'all_probs': all_probs,
'all_tags': all_tags,
'success': True
})
return batch_results
def batch_process_images_onnx(folder_path, model_path, metadata_path, threshold_profile,
active_threshold, active_category_thresholds, save_dir=None,
progress_callback=None, min_confidence=0.1, batch_size=16,
category_limits=None):
"""
Process all images in a folder using the ONNX model with new metadata format.
Args:
folder_path: Path to folder containing images
model_path: Path to the ONNX model file
metadata_path: Path to the model metadata file
threshold_profile: Selected threshold profile
active_threshold: Overall threshold value
active_category_thresholds: Category-specific thresholds
save_dir: Directory to save tag files (if None uses default)
progress_callback: Optional callback for progress updates
min_confidence: Minimum confidence threshold
batch_size: Number of images to process at once
category_limits: Dictionary mapping categories to their tag limits
Returns:
Dictionary with results for each image
"""
from utils.file_utils import save_tags_to_file # Import here to avoid circular imports
# Find all image files in the folder
image_extensions = ['*.jpg', '*.jpeg', '*.png']
image_files = []
for ext in image_extensions:
image_files.extend(glob.glob(os.path.join(folder_path, ext)))
image_files.extend(glob.glob(os.path.join(folder_path, ext.upper())))
# Remove duplicates (Windows case-insensitive filesystems)
if os.name == 'nt': # Windows
unique_paths = set()
unique_files = []
for file_path in image_files:
normalized_path = os.path.normpath(file_path).lower()
if normalized_path not in unique_paths:
unique_paths.add(normalized_path)
unique_files.append(file_path)
image_files = unique_files
if not image_files:
return {
'success': False,
'error': f"No images found in {folder_path}",
'results': {}
}
# Use the provided save directory or create a default one
if save_dir is None:
app_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
save_dir = os.path.join(app_dir, "saved_tags")
# Ensure the directory exists
os.makedirs(save_dir, exist_ok=True)
# Load metadata
try:
with open(metadata_path, 'r') as f:
metadata = json.load(f)
except Exception as e:
return {
'success': False,
'error': f"Failed to load metadata: {e}",
'results': {}
}
# Create ONNX tagger
try:
tagger = ONNXImageTagger(model_path, metadata)
except Exception as e:
return {
'success': False,
'error': f"Failed to load model: {e}",
'results': {}
}
# Process images in batches
results = {}
total_images = len(image_files)
processed = 0
start_time = time.time()
# Process in batches
for i in range(0, total_images, batch_size):
batch_start = time.time()
# Get current batch of images
batch_files = image_files[i:i+batch_size]
batch_size_actual = len(batch_files)
# Update progress if callback provided
if progress_callback:
progress_callback(processed, total_images, batch_files[0] if batch_files else None)
print(f"Processing batch {i//batch_size + 1}/{(total_images + batch_size - 1)//batch_size}: {batch_size_actual} images")
try:
# Preprocess images in parallel
processed_images, valid_paths = preprocess_images_parallel(batch_files)
if processed_images:
# Run batch prediction
batch_results = tagger.predict_batch(
processed_images,
threshold=active_threshold,
category_thresholds=active_category_thresholds,
min_confidence=min_confidence
)
# Process results for each image
for j, (image_path, result) in enumerate(zip(valid_paths, batch_results)):
# Update progress if callback provided
if progress_callback:
progress_callback(processed + j, total_images, image_path)
# Apply category limits if specified
if category_limits and result['success']:
print(f"Applying limits to {os.path.basename(image_path)}: {len(result['all_tags'])} → ", end="")
result = apply_category_limits(result, category_limits)
print(f"{len(result['all_tags'])} tags")
# Save the tags to a file
if result['success']:
try:
output_path = save_tags_to_file(
image_path=image_path,
all_tags=result['all_tags'],
custom_dir=save_dir,
overwrite=True
)
result['output_path'] = str(output_path)
except Exception as e:
print(f"Error saving tags for {image_path}: {e}")
result['save_error'] = str(e)
# Store the result
results[image_path] = result
processed += batch_size_actual
# Calculate batch timing
batch_end = time.time()
batch_time = batch_end - batch_start
print(f"Batch processed in {batch_time:.2f} seconds ({batch_time/batch_size_actual:.2f} seconds per image)")
except Exception as e:
print(f"Error processing batch: {str(e)}")
traceback.print_exc()
# Process failed images one by one as fallback
for j, image_path in enumerate(batch_files):
try:
# Update progress if callback provided
if progress_callback:
progress_callback(processed + j, total_images, image_path)
# Preprocess single image
img_array = preprocess_image(image_path)
# Run inference on single image
single_results = tagger.predict_batch(
[img_array],
threshold=active_threshold,
category_thresholds=active_category_thresholds,
min_confidence=min_confidence
)
if single_results:
result = single_results[0]
# Apply category limits if specified
if category_limits and result['success']:
result = apply_category_limits(result, category_limits)
# Save the tags to a file
if result['success']:
try:
output_path = save_tags_to_file(
image_path=image_path,
all_tags=result['all_tags'],
custom_dir=save_dir,
overwrite=True
)
result['output_path'] = str(output_path)
except Exception as e:
print(f"Error saving tags for {image_path}: {e}")
result['save_error'] = str(e)
results[image_path] = result
else:
results[image_path] = {
'success': False,
'error': 'Failed to process image',
'all_tags': []
}
except Exception as img_e:
print(f"Error processing single image {image_path}: {str(img_e)}")
results[image_path] = {
'success': False,
'error': str(img_e),
'all_tags': []
}
processed += batch_size_actual
# Final progress update
if progress_callback:
progress_callback(total_images, total_images, None)
end_time = time.time()
total_time = end_time - start_time
print(f"Batch processing finished. Total time: {total_time:.2f} seconds, Average: {total_time/total_images:.2f} seconds per image")
return {
'success': True,
'total': total_images,
'processed': len(results),
'results': results,
'save_dir': save_dir,
'time_elapsed': end_time - start_time
}
def test_onnx_imagetagger(model_path, metadata_path, image_path, threshold=0.5, top_k=256):
"""
Test ImageTagger ONNX model with proper handling of all outputs and new metadata format
Args:
model_path: Path to ONNX model file
metadata_path: Path to metadata JSON file
image_path: Path to test image
threshold: Confidence threshold for predictions
top_k: Maximum number of predictions to show
"""
import onnxruntime as ort
import numpy as np
import json
import time
from collections import defaultdict
print(f"Loading ImageTagger ONNX model from {model_path}")
# Load metadata with proper error handling
try:
with open(metadata_path, 'r') as f:
metadata = json.load(f)
except Exception as e:
raise ValueError(f"Failed to load metadata: {e}")
# Extract tag mappings from new metadata structure
try:
if 'dataset_info' in metadata:
# New metadata format
dataset_info = metadata['dataset_info']
tag_mapping = dataset_info['tag_mapping']
idx_to_tag = tag_mapping['idx_to_tag']
tag_to_category = tag_mapping['tag_to_category']
total_tags = dataset_info['total_tags']
else:
# Fallback for older format
idx_to_tag = metadata.get('idx_to_tag', {})
tag_to_category = metadata.get('tag_to_category', {})
total_tags = metadata.get('total_tags', len(idx_to_tag))
print(f"Model info: {total_tags} tags, {len(set(tag_to_category.values()))} categories")
except KeyError as e:
raise ValueError(f"Invalid metadata structure, missing key: {e}")
# Initialize ONNX session with robust provider handling
providers = []
if ort.get_device() == 'GPU':
providers.append('CUDAExecutionProvider')
providers.append('CPUExecutionProvider')
try:
session = ort.InferenceSession(model_path, providers=providers)
active_provider = session.get_providers()[0]
print(f"Using provider: {active_provider}")
# Print model info
inputs = session.get_inputs()
outputs = session.get_outputs()
print(f"Model inputs: {len(inputs)}")
print(f"Model outputs: {len(outputs)}")
for i, output in enumerate(outputs):
print(f" Output {i}: {output.name} {output.shape}")
except Exception as e:
raise RuntimeError(f"Failed to create ONNX session: {e}")
# Preprocess image
print(f"Processing image: {image_path}")
try:
# Get image size from metadata
img_size = metadata.get('model_info', {}).get('img_size', 512)
img_tensor = preprocess_image(image_path, image_size=img_size)
img_numpy = img_tensor[np.newaxis, :] # Add batch dimension
print(f"Input shape: {img_numpy.shape}, dtype: {img_numpy.dtype}")
except Exception as e:
raise ValueError(f"Image preprocessing failed: {e}")
# Run inference
input_name = session.get_inputs()[0].name
print("Running inference...")
start_time = time.time()
try:
outputs = session.run(None, {input_name: img_numpy})
inference_time = time.time() - start_time
print(f"Inference completed in {inference_time:.4f} seconds")
except Exception as e:
raise RuntimeError(f"Inference failed: {e}")
# Handle outputs properly
if len(outputs) >= 2:
initial_logits = outputs[0]
refined_logits = outputs[1]
selected_candidates = outputs[2] if len(outputs) > 2 else None
# Use refined predictions as main output
main_logits = refined_logits
print(f"Using refined predictions (shape: {refined_logits.shape})")
else:
# Fallback to single output
main_logits = outputs[0]
print(f"Using single output (shape: {main_logits.shape})")
# Apply sigmoid to get probabilities
main_probs = 1.0 / (1.0 + np.exp(-main_logits))
# Apply threshold and get predictions
predictions_mask = (main_probs >= threshold)
indices = np.where(predictions_mask[0])[0]
if len(indices) == 0:
print(f"No predictions above threshold {threshold}")
# Show top 5 regardless of threshold
top_indices = np.argsort(main_probs[0])[-5:][::-1]
print("Top 5 predictions:")
for idx in top_indices:
idx_str = str(idx)
tag_name = idx_to_tag.get(idx_str, f"unknown-{idx}")
prob = float(main_probs[0, idx])
print(f" {tag_name}: {prob:.3f}")
return {}
# Group by category
tags_by_category = defaultdict(list)
for idx in indices:
idx_str = str(idx)
tag_name = idx_to_tag.get(idx_str, f"unknown-{idx}")
category = tag_to_category.get(tag_name, "general")
prob = float(main_probs[0, idx])
tags_by_category[category].append((tag_name, prob))
# Sort by probability within each category
for category in tags_by_category:
tags_by_category[category] = sorted(
tags_by_category[category],
key=lambda x: x[1],
reverse=True
)[:top_k] # Limit per category
# Print results
total_predictions = sum(len(tags) for tags in tags_by_category.values())
print(f"\nPredicted tags (threshold: {threshold}): {total_predictions} total")
# Category order for consistent display
category_order = ['general', 'character', 'copyright', 'artist', 'meta', 'year', 'rating']
for category in category_order:
if category in tags_by_category:
tags = tags_by_category[category]
print(f"\n{category.upper()} ({len(tags)}):")
for tag, prob in tags:
print(f" {tag}: {prob:.3f}")
# Show any other categories not in standard order
for category in sorted(tags_by_category.keys()):
if category not in category_order:
tags = tags_by_category[category]
print(f"\n{category.upper()} ({len(tags)}):")
for tag, prob in tags:
print(f" {tag}: {prob:.3f}")
# Performance stats
print(f"\nPerformance:")
print(f" Inference time: {inference_time:.4f}s")
print(f" Provider: {active_provider}")
print(f" Max confidence: {main_probs.max():.3f}")
if total_predictions > 0:
avg_conf = np.mean([prob for tags in tags_by_category.values() for _, prob in tags])
print(f" Average confidence: {avg_conf:.3f}")
return dict(tags_by_category)