File size: 5,934 Bytes
9433533
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from typing import Any
from collections.abc import Iterator

from elasticsearch import Elasticsearch

from ask_candid.base.retrieval.sparse_lexical import SpladeEncoder
from ask_candid.base.config.connections import BaseElasticAPIKeyCredential, BaseElasticSearchConnection

NEWS_TRUST_SCORE_THRESHOLD = 0.8
SPARSE_ENCODING_SCORE_THRESHOLD = 0.4


def build_sparse_vector_query(
    query: str,
    fields: tuple[str, ...],
    inference_id: str = ".elser-2-elasticsearch"
) -> dict[str, Any]:
    """Builds a valid Elasticsearch text expansion query payload

    Parameters
    ----------
    query : str
        Search context string
    fields : Tuple[str, ...]
        Semantic text field names
    inference_id : str, optional
        ID of model deployed in Elasticsearch, by default ".elser-2-elasticsearch"

    Returns
    -------
    Dict[str, Any]
    """

    output = []

    for f in fields:
        output.append({
            "nested": {
                "path": f"embeddings.{f}.chunks",
                "query": {
                    "sparse_vector": {
                        "field": f"embeddings.{f}.chunks.vector",
                        "inference_id": inference_id,
                        "prune": True,
                        "query": query,
                        # "boost": 1 / len(fields)
                    }
                },
                "inner_hits": {
                    "_source": False,
                    "size": 2,
                    "fields": [f"embeddings.{f}.chunks.chunk"]
                }
            }
        })
    return {"query": {"bool": {"should": output}}}


def build_sparse_vector_and_text_query(
    query: str,
    semantic_fields: tuple[str, ...],
    text_fields: tuple[str, ...] | None,
    highlight_fields: tuple[str, ...] | None,
    excluded_fields: tuple[str, ...] | None,
    inference_id: str = ".elser-2-elasticsearch"
) -> dict[str, Any]:
    """Builds Elasticsearch sparse vector and text query payload

    Parameters
    ----------
    query : str
        Search context string
    semantic_fields : Tuple[str]
        Semantic text field names
    highlight_fields: Tuple[str]
        Fields which relevant chunks will be helpful for the agent to read
    text_fields : Tuple[str]
        Regular text fields
    excluded_fields :  Tuple[str]
        Fields to exclude from the source
    inference_id : str, optional
        ID of model deployed in Elasticsearch, by default ".elser-2-elasticsearch"

    Returns
    -------
    Dict[str, Any]
    """

    output = []
    final_query = {}

    for f in semantic_fields:
        output.append({
            "sparse_vector": {
                "field": f"{f}",
                "inference_id": inference_id,
                "query": query,
                "boost": 1, 
                "prune": True # doesn't seem it changes anything if we use text queries additionally
            }
        })

    if text_fields:
        output.append({
            "multi_match": {
                "fields": text_fields,
                "query": query,
                "boost": 3
            }
        })

  
    final_query = {
        "track_total_hits": False,
        "query": {
            "bool": {"should": output}
        }
    }

    if highlight_fields:
        final_query["highlight"] = {
            "fields": {
                f"{f}": {
                    "type": "semantic", # ensures that highlighting is applied exclusively to semantic_text fields.
                    "number_of_fragments": 2, # number of chunks
                    "order": "none" # can be "score", but we have only two and hope for context
                }
                for f in highlight_fields
            }
        }
    
    if excluded_fields:
        final_query["_source"] = {"excludes": list(excluded_fields)}
    return final_query


def news_query_builder(
    query: str,
    fields: tuple[str, ...],
    encoder: SpladeEncoder,
    days_ago: int = 60,
) -> dict[str, Any]:
    """Builds a valid Elasticsearch query against Candid news, simulating a token expansion.

    Parameters
    ----------
    query : str
        Search context string

    Returns
    -------
    Dict[str, Any]
    """

    tokens = encoder.token_expand(query)

    elastic_query = {
        "_source": ["id", "link", "title", "content", "site_name"],
        "query": {
            "bool": {
                "filter": [
                    {"range": {"event_date": {"gte": f"now-{days_ago}d/d"}}},
                    {"range": {"insert_date": {"gte": f"now-{days_ago}d/d"}}},
                    {"range": {"article_trust_worthiness": {"gt": NEWS_TRUST_SCORE_THRESHOLD}}}
                ],
                "should": []
            }
        }
    }

    for token, score in tokens.items():
        if score > SPARSE_ENCODING_SCORE_THRESHOLD:
            elastic_query["query"]["bool"]["should"].append({
                "multi_match": {
                    "query": token,
                    "fields": fields,
                    "boost": score
                }
            })
    return elastic_query


def multi_search_base(
    queries: list[dict[str, Any]],
    credentials: BaseElasticSearchConnection | BaseElasticAPIKeyCredential,
    timeout: int = 180
) -> Iterator[dict[str, Any]]:
    if isinstance(credentials, BaseElasticAPIKeyCredential):
        es = Elasticsearch(
            cloud_id=credentials.cloud_id,
            api_key=credentials.api_key,
            verify_certs=False,
            request_timeout=timeout
        )
    elif isinstance(credentials, BaseElasticSearchConnection):
        es = Elasticsearch(
            credentials.url,
            http_auth=(credentials.username, credentials.password),
            timeout=timeout
        )
    else:
        raise TypeError(f"Invalid credentials of type `{type(credentials)}")

    yield from es.msearch(body=queries).get("responses", [])
    es.close()