File size: 14,208 Bytes
9433533
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
from typing import Literal, Any
from collections.abc import Iterator, Iterable
from itertools import groupby
import logging

from langchain_core.documents import Document

from ask_candid.base.retrieval.elastic import (
    build_sparse_vector_query,
    build_sparse_vector_and_text_query,
    news_query_builder,
    multi_search_base
)
from ask_candid.base.retrieval.sparse_lexical import SpladeEncoder
from ask_candid.base.retrieval.schemas import ElasticHitsResult
import ask_candid.base.retrieval.sources as S
from ask_candid.services.small_lm import CandidSLM

from ask_candid.base.config.connections import SEMANTIC_ELASTIC_QA, NEWS_ELASTIC

SourceNames = Literal[
    "Candid Blog",
    "Candid Help",
    "Candid Learning",
    "Candid News",
    "IssueLab Research Reports",
    "YouTube Training"
]
sparse_encoder = SpladeEncoder()
logging.basicConfig(format="[%(levelname)s] (%(asctime)s) :: %(message)s")
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)


# TODO remove
def get_context(field_name: str, hit: ElasticHitsResult, context_length: int = 1024, add_context: bool = True) -> str:
    """Pads the relevant chunk of text with context before and after

    Parameters
    ----------
    field_name : str
        a field with the long text that was chunked into pieces
    hit : ElasticHitsResult
    context_length : int, optional
        length of text to add before and after the chunk, by default 1024
    add_context : bool, optional
        Set to `False` to expand the text context by searching for the Elastic inner hit inside the larger document
        , by default True

    Returns
    -------
    str
        longer chunks stuffed together
    """

    chunks = []
    # NOTE chunks have tokens, long text is a string, but may contain html which affects tokenization
    long_text = hit.source.get(field_name) or ""
    long_text = long_text.lower()

    inner_hits_field = f"embeddings.{field_name}.chunks"
    found_chunks = hit.inner_hits.get(inner_hits_field, {}) if hit.inner_hits else None
    if found_chunks:
        for h in found_chunks.get("hits", {}).get("hits") or []:
            chunk = h.get("fields", {})[inner_hits_field][0]["chunk"][0]

            # cutting the middle because we may have tokenizing artifacts there
            chunk = chunk[3: -3]

            if add_context:
                # Find the start and end indices of the chunk in the large text
                start_index = long_text.find(chunk[:20])

                # Chunk is found
                if start_index != -1:
                    end_index = start_index + len(chunk)
                    pre_start_index = max(0, start_index - context_length)
                    post_end_index = min(len(long_text), end_index + context_length)
                    chunks.append(long_text[pre_start_index:post_end_index])
            else:
                chunks.append(chunk)
    return '\n\n'.join(chunks)


def generate_queries(
    query: str,
    sources: list[SourceNames],
    news_days_ago: int = 60
) -> tuple[list[dict[str, Any]], list[dict[str, Any]]]:
    """Builds Elastic queries against indices which do or do not support sparse vector queries.

    Parameters
    ----------
    query : str
        Text describing a user's question or a description of investigative work which requires support from Candid's
        knowledge base
    sources : list[SourceNames]
        One or more sources of knowledge from different areas at Candid.
        * Candid Blog: Blog posts from Candid staff and trusted partners intended to help those in the sector or
        illuminate ongoing work
        * Candid Help: Candid FAQs to help user's get started with Candid's product platform and learning resources
        * Candid Learning: Training documents from Candid's subject matter experts
        * Candid News: News articles and press releases about real-time activity in the philanthropic sector
        * IssueLab Research Reports: Academic research reports about the social/philanthropic sector
        * YouTube Training: Transcripts from video-based training seminars from Candid's subject matter experts
    news_days_ago : int, optional
        How many days in the past to search for news articles, if a user is asking for recent trends then this value
        should be set lower >~ 10, by default 60

    Returns
    -------
    tuple[list[dict[str, Any]], list[dict[str, Any]]]
        (sparse vector queries, queries for indices which do not support sparse vectors)
    """

    vector_queries = []
    quasi_vector_queries = []

    for source_name in sources:
        if source_name == "Candid Blog":
            q = build_sparse_vector_query(query=query, fields=S.CandidBlogConfig.semantic_fields)
            q["_source"] = {"excludes": ["embeddings"]}
            q["size"] = 5
            vector_queries.extend([{"index": S.CandidBlogConfig.index_name}, q])
        elif source_name == "Candid Help":
            q = build_sparse_vector_query(query=query, fields=S.CandidHelpConfig.semantic_fields)
            q["_source"] = {"excludes": ["embeddings"]}
            q["size"] = 5
            vector_queries.extend([{"index": S.CandidHelpConfig.index_name}, q])
        elif source_name == "Candid Learning":
            q = build_sparse_vector_query(query=query, fields=S.CandidLearningConfig.semantic_fields)
            q["_source"] = {"excludes": ["embeddings"]}
            q["size"] = 5
            vector_queries.extend([{"index": S.CandidLearningConfig.index_name}, q])
        elif source_name == "Candid News":
            q = news_query_builder(
                query=query,
                fields=S.CandidNewsConfig.semantic_fields,
                encoder=sparse_encoder,
                days_ago=news_days_ago
            )
            q["size"] = 5
            quasi_vector_queries.extend([{"index": S.CandidNewsConfig.index_name}, q])
        elif source_name == "IssueLab Research Reports":
            q = build_sparse_vector_query(query=query, fields=S.IssueLabConfig.semantic_fields)
            q["_source"] = {"excludes": ["embeddings"]}
            q["size"] = 1
            vector_queries.extend([{"index": S.IssueLabConfig.index_name}, q])
        elif source_name == "YouTube Training":
            q = build_sparse_vector_and_text_query(
                query=query,
                semantic_fields=S.YoutubeConfig.semantic_fields,
                text_fields=S.YoutubeConfig.text_fields,
                highlight_fields=S.YoutubeConfig.highlight_fields,
                excluded_fields=S.YoutubeConfig.excluded_fields
            )
            q["size"] = 5
            vector_queries.extend([{"index": S.YoutubeConfig.index_name}, q])

    return vector_queries, quasi_vector_queries


def run_search(
    vector_searches: list[dict[str, Any]] | None = None,
    non_vector_searches: list[dict[str, Any]] | None = None,
) -> list[ElasticHitsResult]:
    def _msearch_response_generator(responses: Iterable[dict[str, Any]]) -> Iterator[ElasticHitsResult]:
        for query_group in responses:
            for h in query_group.get("hits", {}).get("hits", []):
                inner_hits = h.get("inner_hits", {})

                if not inner_hits and "news" in h.get("_index"):
                    inner_hits = {"text": h.get("_source", {}).get("content")}

                yield ElasticHitsResult(
                    index=h["_index"],
                    id=h["_id"],
                    score=h["_score"],
                    source=h["_source"],
                    inner_hits=inner_hits,
                    highlight=h.get("highlight", {})
                )

    results = []
    if vector_searches is not None and len(vector_searches) > 0:
        hits = multi_search_base(queries=vector_searches, credentials=SEMANTIC_ELASTIC_QA)
        for hit in _msearch_response_generator(responses=hits):
            results.append(hit)
    if non_vector_searches is not None and len(non_vector_searches) > 0:
        hits = multi_search_base(queries=non_vector_searches, credentials=NEWS_ELASTIC)
        for hit in _msearch_response_generator(responses=hits):
            results.append(hit)
    return results


def retrieved_text(hits: dict[str, Any]) -> str:
    """Extracts retrieved sub-texts from documents which are strong hits from semantic queries for the purpose of
    re-scoring by a secondary language model.

    Parameters
    ----------
    hits : Dict[str, Any]

    Returns
    -------
    str
    """

    nlp = CandidSLM()

    text = []
    for _, v in hits.items():
        if _ == "text":
            s = nlp.summarize(v, top_k=3)
            text.append(s.summary)
            # text.append(v)
            continue

        for h in (v.get("hits", {}).get("hits") or []):
            for _, field in h.get("fields", {}).items():
                for chunk in field:
                    if chunk.get("chunk"):
                        text.extend(chunk["chunk"])
    return '\n'.join(text)


def reranker(
    query_results: Iterable[ElasticHitsResult],
    search_text: str | None = None,
    max_num_results: int = 5
) -> Iterator[ElasticHitsResult]:
    """Reranks Elasticsearch hits coming from multiple indices/queries which may have scores on different scales.
    This will shuffle results

    Parameters
    ----------
    query_results : Iterable[ElasticHitsResult]

    Yields
    ------
    Iterator[ElasticHitsResult]
    """

    results: list[ElasticHitsResult] = []
    texts: list[str] = []
    for _, data in groupby(query_results, key=lambda x: x.index):
        data = list(data)  # noqa: PLW2901
        max_score = max(data, key=lambda x: x.score).score
        min_score = min(data, key=lambda x: x.score).score

        for d in data:
            d.score = (d.score - min_score) / (max_score - min_score + 1e-9)
            results.append(d)

            if search_text:
                if d.inner_hits: 
                    text = retrieved_text(d.inner_hits)
                if d.highlight:
                    highlight_texts = []
                    for k,v in d.highlight.items():
                        v_text = '\n'.join(v)
                        highlight_texts.append(v_text)    
                    text = '\n'.join(highlight_texts)
                texts.append(text)

    if search_text and len(texts) == len(results) and len(texts) > 1:
        logger.info("Re-ranking %d retrieval results", len(results))
        scores = sparse_encoder.query_reranking(query=search_text, documents=texts)
        for r, s in zip(results, scores):
            r.score = s

    yield from sorted(results, key=lambda x: x.score, reverse=True)[:max_num_results]


def process_hit(hit: ElasticHitsResult) -> Document:
    if "issuelab-elser" in hit.index:
        doc = Document(
            page_content='\n\n'.join([
                hit.source.get("combined_item_description", ""),
                hit.source.get("description", ""),
                hit.source.get("combined_issuelab_findings", ""),
                get_context("content", hit, context_length=12)
            ]),
            metadata={
                "title": hit.source["title"],
                "source": "IssueLab",
                "source_id": hit.source["resource_id"],
                "url": hit.source.get("permalink", "")
            }
        )
    elif "youtube" in hit.index:
        highlight = hit.highlight or {}
        doc = Document(
            page_content='\n\n'.join([
                hit.source.get("title", ""),
                hit.source.get("semantic_description", ""),
                ' '.join(highlight.get("semantic_cc_text", []))
            ]),
            metadata={
                "title": hit.source.get("title", ""),
                "source": "Candid YouTube",
                "source_id": hit.source['video_id'],
                "url": f"https://www.youtube.com/watch?v={hit.source['video_id']}"
            }
        )
    elif "candid-blog" in hit.index:
        doc = Document(
            page_content='\n\n'.join([
                hit.source.get("title", ""),
                hit.source.get("excerpt", ""),
                get_context("content", hit, context_length=12, add_context=False),
                get_context("authors_text", hit, context_length=12, add_context=False),
                hit.source.get("title_summary_tags", "")
            ]),
            metadata={
                "title": hit.source.get("title", ""),
                "source": "Candid Blog",
                "source_id": hit.source["id"],
                "url": hit.source["link"]
            }
        )
    elif "candid-learning" in hit.index:
        doc = Document(
            page_content='\n\n'.join([
                hit.source.get("title", ""),
                hit.source.get("staff_recommendations", ""),
                hit.source.get("training_topics", ""),
                get_context("content", hit, context_length=12)
            ]),
            metadata={
                "title": hit.source["title"],
                "source": "Candid Learning",
                "source_id": hit.source["post_id"],
                "url": hit.source.get("url", "")
            }
        )
    elif "candid-help" in hit.index:
        doc = Document(
            page_content='\n\n'.join([
                hit.source.get("combined_article_description", ""),
                get_context("content", hit, context_length=12)
            ]),
            metadata={
                "title": hit.source.get("title", ""),
                "source": "Candid Help",
                "source_id": hit.source["id"],
                "url": hit.source.get("link", "")
            }
        )
    elif "news" in hit.index:
        doc = Document(
            page_content='\n\n'.join([hit.source.get("title", ""), hit.source.get("content", "")]),
            metadata={
                "title": hit.source.get("title", ""),
                "source": hit.source.get("site_name") or "Candid News",
                "source_id": hit.source["id"],
                "url": hit.source.get("link", "")
            }
        )
    else:
        raise ValueError(f"Unknown source result from index {hit.index}")
    return doc